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Abstract

The Convolutional Sparse Coding (CSC) model has re-

cently gained considerable traction in the signal and im-

age processing communities. By providing a global, yet

tractable, model that operates on the whole image, the CSC

was shown to overcome several limitations of the patch-

based sparse model while achieving superior performance

in various applications. Contemporary methods for pur-

suit and learning the CSC dictionary often rely on the Al-

ternating Direction Method of Multipliers (ADMM) in the

Fourier domain for the computational convenience of con-

volutions, while ignoring the local characterizations of the

image. In this work we propose a new and simple approach

that adopts a localized strategy, based on the Block Coor-

dinate Descent algorithm. The proposed method, termed

Local Block Coordinate Descent (LoBCoD), operates lo-

cally on image patches. Furthermore, we introduce a novel

stochastic gradient descent version of LoBCoD for training

the convolutional filters. This Stochastic-LoBCoD lever-

ages the benefits of online learning, while being applicable

even to a single training image. We demonstrate the advan-

tages of the proposed algorithms for image inpainting and

multi-focus image fusion, achieving state-of-the-art results.

1. INTRODUCTION

Sparse representation has been shown to be a very pow-

erful model for many real-world signals, leading to impres-

sive results in various restoration tasks such as denoising

[10], deblurring [7], inpainting [11, 25], super-resolution

[7, 40] and recognition [37], to name a few. The core as-

sumption of this model is that signals can be expressed as

a linear combination of a few columns, also called atoms,

taken from a matrix D ∈ R
N×M termed a dictionary. Con-

cretely, for a signal X ∈ R
N , the model assumption is that

X = DΓ + V , where V is a noise vector with bounded

energy ‖V ‖2 < ǫ, which allows for a slight deviation from

the model and/or may account for noise in the signal. The

vector Γ ∈ R
M is the sparse representation of the signal,

obtained by solving the pursuit problem [1, 9]:

Γ̂ = argmin
Γ

‖Γ‖0 s.t. ‖X −DΓ‖2 < ǫ, (1)

where ‖Γ‖0 counts the number of non-zeros in Γ. The solu-

tion of problem (1) can be approximated using greedy algo-

rithms such as Orthogonal Matching Pursuit (OMP) [4] or

convex relaxation algorithms such as Basis Pursuit (BP) [5].

Over the years, various methods have been proposed to

adaptively learn the dictionary D from real data. Prime ex-

amples are K-SVD [1], MOD [12], Double sparsity [29],

Online dictionary learning [24], Trainlets [33], and more.

When dealing with high-dimensional signals, learning

the dictionary suffers from the curse of dimensionality, ren-

dering this task infeasible. To cope with this problem,

many algorithms suggest training a local model on fully-

overlapping patches taken from the signal X . This patch-

based technique has gained much popularity due to its sim-

plicity and high-performance [7, 10, 25, 40]. Yet, patch-

based approaches are known to be sub-optimal as they ig-

nore the relations between neighboring patches [28, 32].

An alternative approach to meet this challenge is posed

by the Convolutional Sparse Coding (CSC) model. This

model assumes that the signal can be represented as a su-

perposition of a few local filters, convolved with sparse

feature-maps. The CSC model utilizes a structured dictio-

nary (union of narrowly banded convolutional matrices) that

facilitates a global handling of the signal. This model has

been the subject of an extensive research in the past several

years, shown to lead to superior performance in applica-

tions such as super-resolution [17], inpainting [18], image

separation [26], source separation [20] and audio process-

ing [16].

Contemporary CSC based algorithms often rely on the

ADMM [2] formulation for representation-extraction and

filter-training. While the majority of works employ ADMM

in the Fourier domain [3, 18, 35], a recent approach (SBDL)

proposed by Papyan at el. [26], adopts a local point of view

and trains the filters in terms of only local computations

in the signal domain. The SBDL algorithm demonstrates
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state-of-the-art performance compared to the Fourier-based

methods, albeit still relying on the ADMM algorithm. As

such, this approach incurs additional memory and sensitiv-

ity to additional parameters, it only accommodates a batch-

learning mode, and its convergence is questionable1.

In this work we propose intuitive and easy-to-implement

algorithms, based on the block coordinate descent ap-

proach, for solving the global pursuit and the CSC filter

learning problems, all done with local computations in the

original domain. The proposed pursuit algorithm operates

without auxiliary variables nor extra parameters for tun-

ing. We call this algorithm Local Block Coordinate De-

scent (LoBCoD). In addition, we introduce a stochastic gra-

dient descent variant of LoBCoD for training the convolu-

tional filters. This algorithm leverages the benefits of online

learning, while being applicable even to a single training-

image. The LoBCoD algorithm and its stochastic version

show faster convergence and achieve a better solution to

the CSC problem compared to the previous ADMM-based

methods (global or local).

The rest of this paper is organized as follows: Section

2 reviews the CSC model and discusses previous methods.

The proposed pursuit algorithm is presented in Section 3. In

Section 4 we discuss dictionary update methods and intro-

duce the stochastic LoBCoD algorithm. We compare these

methods with previously published approaches in section

5. Section 6 extends our methods to image inpainting and

multi-focus image fusion, followed by empirical results in

Section 7. Section 8 concludes this work.

2. Convolutional sparse coding

The CSC model assumes that a signal2 X ∈ R
N can

be represented by the sum of m convolutions. These are

built by feature maps {Zi}mi=1, each of length of the original

signal N , convolved with m small support filters {di}mi=1

of length n ≪ N . In the dictionary learning problem, one

minimizes the following cost function over both the filters

and the feature maps3:

min
di,Zi

1

2
‖X −

m∑

i=1

di ∗ Zi‖22 + λ

m∑

i=1

‖Zi‖1. (2)

Given the filters, the above problem becomes the CSC pur-

suit task of finding the representations {Zi}mi=1. Consider

a global dictionary D to be the concatenation of m banded

circulant matrices, where each matrix represents a convolu-

tion with one filter di. By permuting its columns, the global

dictionary D consists of all shifted versions of a local dic-

tionary DL of size n × m, containing the filters {di}mi=1

1While SBDL’s pursuit method is provably converging, this is no longer

true when the dictionary is updated within the ADMM.
2The description given focuses on 1D signals for simplicity of the pre-

sentation, and all our treatment applies to higher dimensions just as well.
3We assume that the filters are normalized to a unit l2-norm.

=

γi ∈ ℝ 2𝑛−1 𝑚
𝐏iX ∈ ℝ𝑛

αi ∈ ℝ𝑚

𝐃 ∈ ℝ𝑁×𝑁𝑚X ∈ ℝ𝑁 Γ ∈ ℝ𝑁𝑚

𝐃𝐿 ∈ ℝ𝑛×𝑚

𝛀 ∈ ℝ𝑛× 2𝑛−1 𝑚

⋮

⋮

⋮

⋮

Figure 1: The CSC model and its local components.

as its columns, and the global sparse vector Γ is simply the

interlaced concatenation of all the feature maps {Zi}mi=1.

Such a structure is depicted in Figure 1. Using the above

formulation, the convolutional dictionary learning problem

(2) can be rewritten as

min
D,Γ

1

2
‖X −DΓ‖22 + λ‖Γ‖1. (3)

Similar to our earlier comment, when D is known, we ob-

tain the CSC pursuit problem, defined as

min
Γ

1

2
‖X −DΓ‖22 + λ‖Γ‖1. (4)

Herein, we review some of the definitions from [27] as they

will serve us later for the description of our algorithms.

The global sparse vector Γ can be broken into N non-

overlapping m dimensional local vectors αi, referred to as

needles. This way, one can express the global vector X
as X =

∑N

i=1 P
T
i DLαi, where P

T
i ∈ R

N×n is the oper-

ator that positions DLαi in the i-th location and pads the

rest of the entries with zeros. On the other hand, a patch

PiX = PiDΓ taken from the signal X equals to Ωγi (see

Figure 1), where Ω ∈ R
n×(2n−1)m is a stripe dictionary

containing DL in its center, and γi is the stripe vector con-

taining the local vector αi in its center. In other words, a

stripe γi is the sparse vector that codes all the content in

the patch PiX , whereas a needle αi only codes part of the

information within it.

The theoretical work in [27] suggested an analysis of the

CSC global model, augmented by a localized sparsity mea-

sure. Inspired by this analysis, herein we maintain such a

local-global decomposition and propose a global algorithm

that operates locally on image patches.

3. Proposed Method: CSC Pursuit

3.1. Local Block Coordinate Descent

In this section we focus on the pursuit of the representa-

tions, leaving the study of updating the dictionary for Sec-

tion 4. The convolutional sparse coding problem presented

in the previous section is solved by minimizing the global
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objective of Equation (4). In this paper, we adopt a local

strategy and split the global sparse vector Γ into local vec-

tors, needles αi, and express the global CSC problem in

term of such needles and the local dictionary DL by

min
DL,{αi}

1

2
‖X −

N∑

i=1

P
T
i DLαi‖22 + λ

N∑

i=1

‖αi‖1. (5)

However, rather than optimizing with respect to all the nee-

dles together, we suggest to treat the needles sequentially,

and optimize with respect to each block αi separately. As

such, the update rule of each needle can be written as

min
αi

1

2
‖(X −

N∑

j=1

j 6=i

P
T
j DLαj)−P

T
i DLαi‖22 + λ‖αi‖1.

(6)

By defining Ri = (X−
∑N

j=1

j 6=i
P

T
j DLαj) as the residual im-

age without the contribution of the needle αi, we can rewrite

Equation (6) as

min
αi

1

2
‖Ri −P

T
i DLαi‖22 + λ‖αi‖1. (7)

While the above minimization involves global variables,

such as the residual Ri, one can show4 that this can be de-

composed into an equivalent and local problem:

min
αi

1

2
‖PiRi −DLαi‖22 + λ‖αi‖1. (8)

This follows from the observation that the update rule of the

needle αi is affected only by pixels of the corresponding

patch PiRi (the part that fully overlaps with DLαi).

The main idea of the block coordinate descent algorithm

is that every step minimizes the overall penalty w.r.t. a cer-

tain block of coordinates, while the other ones are set to

their most updated values. Following this idea, every local

pursuit (8) proceeds by updating the global reconstructed

signal X̂ and the global residual R = X − X̂ , as a prepro-

cessing stage that precedes the update of the next needle,

based on the most updated values of the previous needles.

An important insight is that needles that have no foot-

print overlap in the image can be updated efficiently in

parallel in the above algorithm without changing the algo-

rithm’s outcome. This enables employing efficient batch-

implementations of the LARS algorithm [8]. Alternatively,

the calculation can be distributed across multiple processors

to gain a significant speedup in performance. To formalize

these observations, we define the layer Li as the set of nee-

dles that have no induced overlap in the image. We sweep

through these layers and update their respective needles in

parallel, followed by updating the global reconstructed sig-

nal X̂ and the global residual R. This way, the number of

4The proof is provided in the supplementary material.

Algorithm 1: The stochastic LoBCoD pursuit and dic-

tionary learning algorithm

Input: signal X , initial DL, initial needles {α0
i }Ni=1

Output: needles {αi}Ni=1, the trained dictionary DL

Initialization: R = X − X̂ , X̂ =
∑N

i=1 P
T
i DLα

0
i ,

k = 0
while not converged do

k = k + 1
for j = 1:n do

Computation of the residual:

Rj = R+
∑

i∈Lj

P
T
i DLα

k−1
i

Sparse pursuit: ∀i ∈ Lj (in parallel)

αk
i = argmin

αi

1

2
‖PiRj −DLαi‖22 + λ‖αi‖1

Computation of the reconstructed signal:

X̂ = X̂ +
∑

i∈Lj

P
T
i DL(α

k
i − αk−1

i )

Computation of the residual signal:

R = X − X̂

Computation of the gradient w.r.t DL:

∇DL
= −

∑

i∈Lj

PiR· (αk
i )

T

Dictionary update:

DL = P1[DL − η∇DL
]

end

end

the layers imposes the number of the inner iterations, which

will determine the complexity of our final algorithm. In that

manner, the number of the inner iterations depends only on

the patch size; for
√
n ×√

n patches, the number of layers

is n. This pursuit algorithm is presented in Algorithm 1.

Note that this algorithm can clearly be extended to iterate

over multiple signals, but for the sake of brevity we assume

that the data corresponds to an individual signal X .

3.2. Boundary Conditions and Initialization

In the formulation of the CSC model, as shown in Figure

1, we assumed that the dictionary is comprised of a set of

banded circulant matrices, which impose a circulant bound-

ary conditions on the signals. In practice, however, sig-

nals and images do not exhibit circulant boundary behavior.

Therefore, our model incorporates a preemptive treatment

of the boundaries. We adopt a similar approach to [26], in

which the signal boundaries are padded with n−1 elements

prior to decomposing it with the model. At the end of the

process, we discard the added padding by cropping the n−1
boundary elements from the reconstructed signal and from

the resulting feature maps (sparse representation).
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Another beneficial preprocess step is needles initializa-

tion. A good initialization would equally spread the contri-

bution of the needles towards signal reconstruction. With

that goal, we set the initial value of each needle αi to be

the sparse representation of 1
n
PiX , i.e its relative portion

of the corresponding patch. This can be done by solving the

following local pursuit for every needle:

α0
i = argmin

αi

1

2
‖ 1
n
PiX −DLαi‖22 + λ‖αi‖1, (9)

as a preprocess stage of our algorithm.

4. CSC Dictionary Learning

When addressing the question of learning the CSC fil-

ters, the common strategy is to alternate between sparse-

coding and dictionary update steps for a fixed number of

iterations. The dictionary update step aims to find the min-

imum of the quadratic term of Equation (5) subject to the

constraint of normalized dictionary columns:

min
DL

1

2
‖X −

N∑

i=1

P
T
i DLαi‖22

s.t {‖di‖2 = 1}mi=1.

(10)

One can do so in a batch manner which requires access to

the entire dataset at every iteration, or in an online (stochas-

tic) manner that enables access to only small part of the

dataset at every update step. This way it is also applicable

for streaming data scenarios, when the probability distribu-

tion of the data changes over time.

4.1. Batch Update

Usually, for offline applications where the whole dataset

is given and can be stored in memory, the batch approach

is generally simpler, and thus we start with its description.

The typical approach is to alternate between sparse coding

(4) and dictionary update (10). For the latter, solving prob-

lem (10) requires finding the optimum DL that satisfies the

normalization constraint. One can find this optimal solution

using projected steepest descent: perform steepest descent

with a small step size and project the solution to the con-

straint set after each iteration, until convergence. To that

end, the gradient of the objective in problem (10) w.r.t. DL

is5:

∇DL
= −

N∑

i=1

Pi(X − X̂)·αT
i . (11)

The final update step for the local dictionary DL is obtained

by advancing in the direction of this gradient (11) and nor-

malizing the columns of the resulting DL in each iteration,

until convergence.

5This derivation can be found in the supplementary material.

This batch dictionary update rule follows the line of

thought of the MOD algorithm [12], and thus improves the

solution in each step. However, it exhibits a very slow con-

vergence rate since each dictionary update can be performed

only after finishing the entire sparse coding (pursuit) stage,

which is markedly inefficient, as the pursuit is the most

time consuming part of the algorithm. This brings us to

the Stochastic-LoBCoD alternative.

4.2. Local Stochastic Gradient Descent Approach

The traditional Stochastic Gradient Descent (SGD) ap-

proach restricts the computation of the gradient to a subset

of the data and advances in the direction of this noisy gradi-

ent with every update step. Building upon this concept and

the fact that Equation (11) reveals a separable gradient w.r.t

the patches and their corresponding needles, we can update

the dictionary in a stochastic manner. Rather than conclud-

ing the entire pursuit stage and then advancing in the direc-

tion of the global gradient, we can take a small step size η
and update the dictionary after finding the sparse represen-

tation of only a small group of needles. According to Sec-

tion 3, every iteration updates a group of needles, referred

to as a layer Li, which in turn could now serve to update

the dictionary. This way, our algorithm convergences faster

and adopts the stochastic behavior of the SGD while still

operating on a single image.

The filters should be normalized after every dictionary

update by projecting them onto the l2 unit ball. Here, due

to the choice of small step size, we simply normalize the

atoms after every dictionary update:

DL = P1[DL − η∇DL
].

Where P1[·] denotes the operator that projects the dictio-

nary atoms onto the unit ball. The final algorithm that incor-

porates the dictionary update is summarized in Algorithm 1.

Note that, although this dictionary update rule introduces

an extra parameter (the step size η), determining its value

is rather intuitive and can be performed automatically by

setting it to 1 − 2% of the norm of the gradient. Further-

more, this update rule may also leverage any stochastic opti-

mization algorithm such as Momentum, Adagrad, Adadelta,

Adam [30] etc., with their authors’ recommended parame-

ter values. This choice of parameter setting is sufficient, as

will be demonstrated empirically in Section 7. In the rest of

this work we will use this dictionary update rule, as it shows

superior results.

5. Relation to Other Methods

In this section we describe the advantages of the pro-

posed approach over Fourier and ADMM based methods.

Parallel computation: Our algorithm is trivial to paral-

lelize efficiently across multiple processors by virtue of op-

erating directly on the image patches. One can split the
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Method Time Complexity

[22]

(Sparse)
qImNlog(N)
︸ ︷︷ ︸

T-pursuit

+ INmk
︸ ︷︷ ︸

SGD using sparse matrix

[22]

(Freq.)
qImNlog(N)
︸ ︷︷ ︸

T-pursuit

+ ImNlog(N) + INm
︸ ︷︷ ︸

SGD in the Fourier domain

SBDL INnm + IN(k
3
+ mk

2
)

︸ ︷︷ ︸

LARS

+nm
2

︸ ︷︷ ︸

Gram

+ INk(n + m) + nm
2

︸ ︷︷ ︸

K-SVD

Ours INnm + IN(k
3
+ mk

2
)

︸ ︷︷ ︸

LARS

+n
2
m

2

︸ ︷︷ ︸

Gram

+ IN(n + nk + m)
︸ ︷︷ ︸

Stochastic-LoBCoD

Table 1: Complexity analysis of our method compared to

the online algorithms presented in [22] and the SBDL al-

gorithm [26]. I: number of signals, N: signal dimension,

m: number of filters, n: patch size, k: maximum number of

non-zeros per needle, q: number of inner iterations for the

pursuit algorithm. The dominant terms are in red color.

computations between N/n processors, corresponding to

the number of the needles in every layer.

Online learning: The proposed algorithm, due to its local

stochastic manner, can work in a streaming mode, where

the probability distribution of the patches varies over time.

Another aspect of this advantage is our ability to run in an

online manner, even for a single input image. This stands in

sharp contrast to other recent online methods [21, 34] that

allow for online training but only in the case of streaming

images. Other approaches took a step further and proposed

partitioning the image into sub-images [22], but this is still

far from our approach, which can stochastically estimate the

gradient for each needle.

Parameter free: Contrary to ADMM-based approaches,

our algorithm is unhindered by cumbersome manual

parameter-tuning at the pursuit stage. Moreover, it bene-

fits from an intuitively tuned parameter (the step size η) in

the dictionary learning stage, as described as Section 4.

Memory efficient: Our algorithm has better storage com-

plexity compare to the ADMM-based approaches [18, 26]

since the update of the sparse vector is performed in-place

and does not require any auxiliary variables.

Table 1 compares the complexity6 of executing an epoch

in our algorithm with that of the batch algorithm in [26]

and the online algorithms in [22]. The conclusion is that

our algorithm scales linearly with the global dimension N,

while the competing online algorithms grow as O(Nlog(N)).

6. Image Processing via CSC

Having established the foundations for our algorithms,

we now detail their extended variants for tackling the task

of image inpainting and multi-focus image fusion. We also

present adaptations of our algorithm for tackling the tasks

of multi-exposure image fusion and salt-and-pepper text im-

age denoising in the supplementary material.

6The full explanation can be found in the supplementary material.

6.1. Image Inpainting

The task of image inpainting pertains to filling-in miss-

ing pixels at known locations in the image. Assume we are

given a corrupted image Y = AX , where A ∈ R
N×N

is a binary diagonal matrix that represents the degradation

operator, so that A(i, i) = 0 implies that the pixel xi is

masked. The goal of image inpainting is to reconstruct the

original image X . Using the CSC formulation, this can be

performed by first solving the following problem:

min
Γ

1

2
‖Y −ADΓ‖22 + λ‖Γ‖1, (12)

and then taking the found representation Γ and multiplying

by D. By applying the steps described in Section 3, we

split the above global optimization problem into a series of

more manageable problems, each acting on a block of coor-

dinates, i.e. a needle. This yields the following version of

Equation (8):

min
αi

1

2
‖PiRi −AiDLαi‖22 + λ‖αi‖1. (13)

Here, Ai = PiAP
T
i is the operator that masks the corre-

sponding i-th patch, and Ri = (Y −A
∑N

j=1

j 6=i
P

T
j DLαj) is

the residual between the corrupted image and the degraded

version of the reconstructed image, where the residual Ri

does not account for the needle αi. As mentioned in Sec-

tion 3, we parallelize the computations of the needles that

comprised each layer. The dictionary DL can be pretrained

on an external, uncorrupted dataset or trained on the cor-

rupted image directly using the following gradient:

∇DL
= −

∑

i∈Lj

PiA
T (Y −AX̂)·αT

i , (14)

where X̂ =
∑N

j=1 P
T
j DLαj is the reconstructed image.

The gradient derivation above is identical to that in Section

4, but with the exception of incorporating the mask A.

6.2. Multi­focus image fusion

Image fusion techniques aim to integrate complimentary

information from multiple images, captured with different

focal settings, into an all-in-focus image of higher quality.

Many patch-based sparse formulations were proposed to ad-

dress this task, such as choose-max OMP [38], simultane-

ous OMP [39], and coupled sparse representation [14]. In

this work, we adopt a similar scheme to [23], which utilizes

the CSC for tackling the task of image-fusion, but with the

distinction of solving a unified minimization problem.

Assume we are given a set of source images {Y k}Lk=1 to

fuse, as well as a set of pretrained filters {di}mi=1. We start

by decomposing each image Y k into a base component Y k
b

and an edge component Y k
e by imposing distinctive priors.
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For the base component Y k
b we penalize the l2 norm of its

gradient, while for the edge component we employ the CSC

model such that Y k
e =

∑m

i=1 di ∗ Zk
i . Practically, for each

image Y k we solve the unified minimization problem:

min
{Zk

i
},Y k

b

1

2
‖Y k −

m∑

i=1

di ∗ Zk
i − Y k

b ‖22

+λ

m∑

i=1

‖Zk
i ‖1 + µ

1

2
‖∇Y k

b ‖22.
(15)

This is done by alternating between minimizing w.r.t. the

base component Y k
b and the feature maps {Zk

i }mi=1. The

former boils down to a least square problem, and the latter

is solved using our LoBCoD algorithm7.

After decomposing all the images, we aim to fuse their

components. For each image, we build an activity map Ãk,

as the sum of the absolute values of {Zk
i }mi=1. For robust-

ness, we convolve Ãk with a uniform kernel Us ∈ R
s×s:

Ã
k(u, v) =

∑m

i=1
‖Zk

i (u, v)‖1, A
k = Ã

k ∗ Us. (16)

Based on the observation that a significant value in the ac-

tivity map Ak indicates a sharp region in the corresponding

image Y k, we reconstruct the all-in-focus components by

assembling the most prominent regions based on their val-

ues in the corresponding activity maps:

Zf
i (u, v) = Zk∗

i (u, v), Y f
b (u, v) = Y k∗

b (u, v),

k∗ = argmax
k

(Ak(u, v)).
(17)

where {Zf
i }mi=1 and Y f

b are the feature maps and the base

component of the fused image Y f . Finally, the fusion result

is obtained by gathering its components:

Y f = Y f
b +

m∑

i=1

di ∗ Zf
i . (18)

7. Experiments

The full LoBCoD implementation, documentation and

demos that reproduce our results, are available online8.

7.1. Run Time Comparison

To begin with, and to provide a comparison to other state

of the art methods, we evaluate the performance of the pro-

posed algorithm for solving Equation (5) against state of the

art batch algorithms for CSC: the SBDL algorithm [26], the

algorithm in [36] and the algorithm presented in [15], all

using the same settings on the Fruit dataset [13]. For learn-

ing the dictionary, we used the ADAM and the Momentum

7Additional information can be found in the supplementary material.
8https://github.com/EvZissel/LoBCoD

algorithms9 [30]. Figure 2 presents a comparison of the ob-

jective (2) as a function of time for each of the competing

algorithms, showing that our method achieves the fastest

convergence. Figure 4 shows the obtained dictionaries.

We also compared our method to the online stochastic

gradient descent (SGD) based algorithms in [22], which op-

erate in the spatial and in the Fourier domains. Here we ran-

domly selected a training set of 40 images, and a test set of 5

different images from the MIRFLICKER-1M dataset [19].

Figure 3 presents the objective of the test set as a function of

time, showing that our algorithm converges faster. Figure 5

shows the dictionaries obtained by the three methods, illus-

trating similar quality. Note that our algorithm is capable of

operating online even if trained on one image, a possibility

that is not supported by [22].

Figure 2: Run time comparison between our method and

the batch methods in [26], [15] and [36].

Figure 3: Run time comparison between our method and

the online algorithms in [22].

7.2. Image Inpainting

We apply our algorithm to the task of image inpainting,

as described in Section 6.1, and compare our results to [26].

In Section 6.1 we described two viable methods for train-

ing the dictionary; utilizing an external dataset or training

directly on the corrupted source image. For the former, we

used the Fruit dataset [13] for both algorithms, as shown in

9The parameter settings are described in the supplementary material.
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Table 2: Inpainting comparison [dB] between the proposed LoBCoD and the SBDL [26] algorithms.

Barbara Boat House Lena Peppers C.man Couple Finger Hill Man Montage

SBDL external 30.41 31.76 36.17 35.92 33.69 28.76 32.16 30.91 33.12 33.04 28.93

Proposed external 30.93 31.82 36.58 36.15 33.54 28.88 32.46 31.75 33.25 33.18 29.18

SBDL internal 31.98 32.04 36.19 36.01 34.03 28.85 32.18 30.96 33.21 32.99 28.95

Proposed internal 32.50 32.27 36.74 36.17 34.48 29.04 32.56 31.76 33.42 33.25 29.23

(a) Ours (b) SBDL [26] (c) [15]

Figure 4: Comparison between the dictionaries obtained us-

ing the Stochastic-LoBCoD method vs. the methods in [26]

and [15] on the Fruit dataset [13].

(a) Ours (b) [22] Sparse (c) [22] Freq.

Figure 5: Comparison between the dictionaries obtained us-

ing the Stochastic-LoBCoD method vs. the online methods

in [22] on the MIRFLICKR-1M dataset [19].

Figure 4. The corrupted images were created by applying a

randomly generated mask with 50% missing pixels on the

original images. All the corrupted test images were mean-

subtracted prior to applying both algorithms by subtracting

the patch-average of the unmasked pixels. In addition, we

tuned λ in Equation (12) for every corrupted test image, to

account for their varying complexity. The top two rows of

Table 2 present the results using an external dataset in terms

of peak signal-to-noise ratio (PSNR) on a set of 11 test im-

ages, showing that our method leads to better results. Next,

we train the dictionary of both algorithms on the corrupted

image itself. The results are presented at the bottom two

rows of Table 2, indicating that the Stochastic-LoBCoD al-

gorithm achieves better results.

7.3. Multi­focus image fusion

We conclude by applying our LoBCoD algorithm to the

task of multi-focus image fusion, as described in the previ-

ous section. We evaluate our proposed method using syn-

thetic data, as well as data from a real dataset, and compare

our results to [23]. The dictionaries of both methods were

pretrained on the Fruit dataset [13].

For the synthetic experiment, we extracted a portion of

(a) Barbara in-focus (b) Barbara out-of-focus

(c) [23] 41.96dB (d) Proposed 42.27dB

(e) Butterfly in-focus (f) Butterfly out-of-focus

(g) [23] 35.30dB (h) Proposed 36.01dB

Figure 6: Fusion performance comparison on synthetic im-

ages. The PSNR values were computed between the recon-

structed and the original images.

the standard image Barbara and created two input images

of blurred foreground and blurred background. Image blur-

ring was performed using a 9× 9 Gaussian blur kernel with

σ = 2. We repeated the same procedure on the image But-

terfly10, using a 16 × 16 Gaussian blur kernel with σ = 4.

10The image was taken form the dataset in [6].
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(a) Original (b) [23] (c) Proposed

(d) [23] (e) Proposed

Figure 7: Zoom in on the fusion results of the image Butter-

fly. Figures (d) and (e) present the error images of (b) and

(c), respectively. The error images were computed between

the fusion results and the original image (a).

(a) Bird Foreground (b) Bird Background

(c) [23] 39.29dB (d) Proposed 39.81dB

Figure 8: Fusion comparison between the proposed method

and the method in [23] on the image Bird.

(a) [23] (b) Proposed (c) [23] (d) Proposed

Figure 9: Zoom in on the fusion results of the image Bird.

Figure (c) and (d) present the L channel error compared to

that of the original image.

Both sets of synthetic blurred images are presented in Fig-

ure 6, alongside their reconstructed images, and the corre-

sponding PSNR values. The resulting images demonstrate

that our approach leads to visually and quantitatively bet-

ter results. Figure 7 presents a zoom-in view of our recon-

structed image Butterfly, compared to the result of [23] and

the original image; showing that for images with prominent

blur our method achieves visually better results.

(a) Near in-focus (b) Far in-focus

(c) [23] (d) Proposed

Figure 10: Fusion examples of real images taken from [31].

We adapted our approach for fusion of colored images,

and showed the result on the image Bird11. We generate

a pair of blurred background and foreground color images

by applying a 16 × 16 Gaussian blur kernel with σ = 4
on each RGB channel. We chose to blur the image in the

RGB color space to emulate a blur of a camera. Afterwords,

both blurred colored images were treated by transforming

them to the Lab color space. The PSNR for the Bird image

was computed between the L channels of the original and

the reconstructed images. We present the results together

with their PSNR values in Figure 8 and 9, showing that our

approach leads to visually and quantitatively better results.

Lastly, for the real dataset experiment, we ran our pro-

posed algorithm on the image-pair Clocks taken from [31].

Figure 10 presents the resulting fused images, showing

comparable results on this image-pair.

8. Conclusions

In this work we have introduced the local block coor-

dinate descent (LoBCoD) algorithm for performing pursuit

for the global CSC model, while operating locally on im-

age patches. We demonstrated its advantages over con-

tending state-of-the-art methods in terms of memory re-

quirements, efficient parallel computation, and its exemp-

tion from meticulous manual tuning of parameters. In ad-

dition, we proposed a stochastic gradient descent version

(Stochastic-LoBCoD) of this algorithm for training the con-

volutional filters. We highlighted its unique qualities as an

online algorithm that retains the ability to act on a single

image. Finally, we illustrated the advantages of the pro-

posed algorithm on a set of applications and compared it

with competing state-of-the-art methods.
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