
Reversible GANs for Memory-efficient Image-to-Image Translation

Tycho F.A. van der Ouderaa

University of Amsterdam

tychovdo@gmail.com

Daniel E. Worrall

University of Amsterdam

d.e.worrall@uva.nl

Abstract

The Pix2pix [15] and CycleGAN [31] losses have vastly

improved the qualitative and quantitative visual quality of

results in image-to-image translation tasks. We extend this

framework by exploring approximately invertible architec-

tures which are well suited to these losses. These architec-

tures are approximately invertible by design and thus par-

tially satisfy cycle-consistency before training even begins.

Furthermore, since invertible architectures have constant

memory complexity in depth, these models can be built ar-

bitrarily deep. We are able to demonstrate superior quan-

titative output on the Cityscapes and Maps datasets at near

constant memory budget.

1. Introduction

Computer vision was once considered to span a great

many disparate problems, such as superresolution [11], col-

orization [7], denoising and inpainting [29], or style transfer

[12]. Some of these challenges border on computer graph-

ics (e.g. style transfer), while others are more closely related

to numerical problems in the sciences (e.g. superresolution

of medical images [28]). With the new advances of modern

machine learning, many of these tasks have been unified

under the term of image-to-image translation [15].

Mathematically, given two image domains X and Y , the

task is to find or learn a mapping F : X → Y , based

on either paired examples {(xi, yi)} or unpaired examples

{xi} ∪ {yj}. Let’s take the example of image superreso-

lution. Here X may represent the space of low-resolution

images, and Y would represent the corresponding space

of high-resolution images. We might equivalently seek to

learn a mapping G : Y → X . To learn both F and

G it would seem sufficient to use the standard supervised

learning techniques on offer, using convolutional neural net-

works (CNNs) for F and G. For this, we require paired

training data and a loss function ℓ to measure performance.

In the absence of paired training data, we can instead exploit

the reciprocal relationship between F and G. Note how we

expect the compositions G ◦ F ≃ Id and F ◦ G ≃ Id,

where Id is the identity. This property is known as cycle-

consistency [31]. The unpaired training objective is then to

minimize ℓ(G◦F (x), x) or ℓ(F ◦G(y), y) with respect to F

and G, across the whole training set. Notice how in both of

these expressions, we never require explicit pairs (xi, yi).
Naturally, in superresolution exact equality to the identity is

impossible, because the upsampling task F is one-to-many,

and the downsampling task G is many-to-one.

The problem with the cycle-consistency technique is that

while we can insert whatever F and whatever G we deem

appropriate into the model, we avoid making use of the fact

that F and G are approximate inverses of one another. In

this paper, we consider constructing F and G as approxi-

mate inverses, by design. This is not a replacement to cycle-

consistency, but an adjunct to it. A key benefit of this is that

we need not have a separate X → Y and Y → X map-

ping, but just a single X → Y model, which we can run in

reverse to approximate Y → X . Furthermore, note by ex-

plicitly weight-tying the X → Y and Y → X models, we

can see that training in the X → Y direction will also train

the reverse Y → X direction, which does not necessarily

occur with separate models. Lastly, there is also a compu-

tational benefit that invertible networks are very memory-

efficient [13]; intermediate activations do not need to be

stored to perform backpropagation. As a result, invertible

networks can be built arbitrarily deep, while using a fixed

memory-budget—this is relevant because recent work has

suggested a trend of wider and deeper networks perform-

ing better in image generation tasks [4]. Furthermore, this

enables dense pixel-wise translation models to be shifted to

memory-intensive arenas, such as 3D (see Section 5.3 for

our experiements on dense MRI superresolution).

Our results indicate that by using invertible networks

as the central workhorse in a paired or unpaired image-to-

image translation model such as Pix2pix [15] or CycleGAN

[31], we can not only reduce memory overhead, but also

increase fidelity of the output. We demonstrate this on the

Cityscapes and Maps datasets in 2D and on a diffusion ten-

sor image MRI dataset for the 3D scenario (see Section 5).

14720



2. Background and Related Work

In this section, we recap the basics behind Generative

Adversarial Networks (GANs), cycle-consistency, and re-

versible/invertible networks.

2.1. Generative Adversarial Networks (GANs)

Generative adversarial networks (GANs) [14] enjoy

huge success in tasks such as image generation [4], image

interpolation [17], and image re-editing [26]. They consist

of two components, a generator F : Z → Y mapping ran-

dom noise z ∈ Z to images y ∈ Y and a discriminator

D : Y → [0, 1] mapping images y ∈ Y to probabilities.

Given a set of training images {y1, y2, ...}, the generator

produces ‘fake’ images y∗ = F (z), z ∼ p(z), where p(z)
is a simple distribution such as a standard Gaussian, and the

discriminator tries to predict the probability that the image

was from the true image distribution. For training, an ad-

versarial loss LGAN is defined:

LGAN(F,D) = Ey logD(y) + Ez log(1−D(F (z))) (1)

This loss is trained using a minimax regime where intu-

itively we encourage the generator to fool the discrimina-

tor, while also training the discriminator to guess whether

the generator created an image or not. Mathematically this

game [14] is

F ∗ = argmin
F

max
D

LGAN(F,D). (2)

At test time, the discriminator is discarded and the trained

generator is used to hallucinate fake images from the same

distribution [2] as the training set. The generator can be

conditioned on an input image as well. This setup is called

a conditional GAN [24].

2.2. Image­to­Image Translation

In a standard (paired) image-to-image translation prob-

lem [15], we seek to learn the mapping F : X → Y , where

X and Y are corresponding spaces of images. It is natural

to model F with a convolutional neural network (CNN). To

train this CNN we minimize a loss function

L(F ) =
1

n

n∑

i=1

ℓ(F (xi), yi) (3)

where ℓ is a loss function defined in the pixel-space between

the prediction F (xi) and the target yi. Traditional image-

to-image translation tasks relying on pixel-level loss func-

tions are hampered by the fact that these losses do not typ-

ically account for inter-pixel correlations [30], for instance,

L1-losses treat each pixel as independent. Instead, since

GANs do not apply the loss per-pixel, they can account for

these inter-pixel correlational structures. GANs can be co-

opted for image-to-image translation by adding the adver-

sarial loss on top of a standard pixel-level L1 loss function.

This was first performed in the Pix2pix model [15], which

is for paired image-to-image translation problems. Pix2pix

replaces F with a conditional generator F : X × Z → Y ,

where Z is the domain of the random noise; although, in

practice, we usually ignore the additional noise input [31].

The model combines a L1-loss that enforces the model to

map images to the paired translations in a supervised man-

ner with an adversarial loss that enforces the model to adopt

the style of the target domain. The loss is

F ∗ = argmin
F

max
D

LcGAN(F,D) + λLL1(F ) (4)

where

LL1(F ) = Ex,y‖y − F (x)‖1 (5)

LcGAN(F,D) = Ex [logD(x) + log(1−D(F (x))] . (6)

λ is a tuneable hyperparameter typically set in the range

10− 100 [15].

2.3. Cycle­consistency

The CycleGAN model was proposed as an alternative

to Pix2pix for unpaired domains [31]. The model uses

two generators F and G for the respective mappings be-

tween the two domains X and Y (so, F : X → Y and

G : Y → X), and two discriminators DX : X → [0, 1] and

DY : Y → [0, 1] trained to distinguish real and generated

images in both domains. Since there are no image pairings

between domains, we cannot invoke the Pix2pix loss and in-

stead CycleGAN uses a separate cycle-consistency loss that

penalizes the distances Lcycle(G,F, x) = ‖G ◦ F (x)− x‖1
and Lcycle(F,G, y) = ‖F ◦ G(y) − y‖1 across the training

set. This encourages that the mappings F and G are loose

inverses of one another. This allows the model to train on

unpaired data. The total loss is

LcycleGAN = LcGAN(F,DY ) + LcGAN(G,DX)

+ ExLcycle(G,F, x) + EyLcycle(F,G, y). (7)

Given that F and G are loose inverses of one another, it

seems wasteful to use separate models to model each. In

this paper, we model F and G as approximate inverses of

one another. For this, we make use of the new area of in-

vertible neural networks.

2.4. Invertible Neural Networks (INNs)

In recent years, several studies have proposed invertible

neural networks (INNs) in the context of normalizing flow-

based methods [27] [20]. It has been shown that INNs are

capable of generating high quality images [19], perform

image classification without information loss in the hidden

layers [16] and analyzing inverse problems [1]. Most of the

work on INNs, including this study, heavily relies upon the

transformations introduced in NICE [9] later extended in

RealNVP [10]. Although INNs share interesting properties

they remain relatively unexplored.

4721



x1

x2

y1

y2

NN1 NN2

+

+

(a)

x1

x2

y1

y2

NN1 NN2

−

−

(b)

Figure 1. Illustration of forward (a) and backward (b) pass of a

residual block in a reversible residual layer. Note, functions NN1

and NN2 need not be invertible, hence the layer is very flexible and

in practical terms very easy to implement.

Additive Coupling In our model, we obtain an invertible

residual layer, as used in [13], using a technique called addi-

tive coupling [9]: first we split an input x (typically over the

channel dimension) into (x1, x2) and then transform them

using arbitrary complex functions NN1 and NN2 (such as a

ReLU-MLPs) in the form (left):

y1 = x1 + NN1(x2) x1 = y1 − NN1(x2) (8)

y2 = x2 + NN2(y1) x2 = y2 − NN2(y1). (9)

The inverse mappings can be seen on the right. Figure 1

shows a schematic of these equations.

Memory efficiency Interestingly, invertible residual lay-

ers are very memory-efficient because intermediate acti-

vations do not have to be stored to perform backpropaga-

tion [13]. During the backward pass, input activations that

are required for gradient calculations can be (re-)computed

from the output activations because the inverse function is

accessible. This results in a constant spatial complexity

(O(1)) in terms of layer depth (see Table 1).

3. Method

Our goal is to create a memory-efficient image-to-image

translation model, which is approximately invertible by de-

sign. Below we describe the basic outline of our approach

of how to create an approximately-invertible model, which

can be inserted into the existing Pix2pix and CycleGAN

frameworks. We call our model RevGAN.

Technique
Spatial Complexity

(Activations)

Computational

Complexity
Naive O(L) O(L)

Checkpointing [22] O(
√
L) O(L)

Recursive [6] O(logL) O(L logL)
Additive Coupling [13] O(1) O(L)

Table 1. Comparison of Spatial and Computational Complexity

copied from [13]. L denotes number of residual layers. Notice

how the spatial complexity of additive coupling is O(1) versus

O(L) for a naive implementation.

Lifting and Projection In general, image-to-image trans-

lation tasks are not one-to-one. As such, a fully invertible

treatment is undesirable, and sometimes in the case of di-

mensionality mismatches, impossible. Furthermore, it ap-

pears that the high-dimensional, overcomplete representa-

tions used by most modern networks lead to faster train-

ing [25] and better all-round performance [4]. We therefore

split the forward F : X → Y and backward G : Y → X

mappings into three components. With each domain, X

and Y , we associate a high-dimensional feature space X̃

and Ỹ , respectively. There are individual, non-invertible

mappings between each image space and its correspond-

ing high-dimensional feature-space; for example, for image

space X we have EncX : X → X̃ and DecX : X̃ → X .

EncX lifts the image into a higher dimensionality space

and DecX projects the image back down into the low-

dimensional image space. We have used the terms encode

and decode in place of ‘lifting’ and ‘projection’ to stay in

line with the deep learning literature.

Invertible core Between the feature spaces, we then place

an invertible core C : X̃ → Ỹ , so the full mappings are

F = DecY ◦ C ◦ EncX (10)

G = DecX ◦ C−1 ◦ EncY . (11)

For the invertible cores we use invertible residual networks

based on additive coupling as in [13]. The full mappings F

and G will only truly be inverses if EncX ◦ DecX = Id and

EncY ◦ DecY = Id, which cannot be true, since the image

spaces are lower dimensional than the feature spaces. In-

stead, these units are trained to be approximately invertible

pairs via the end-to-end cycle-consistency loss. Since the

encoder and decoder are not necessarily invertible they can

consist of non-invertible operations, such as pooling and

strided convolutions.

Because both the core C and its inverse C−1 are dif-

ferentiable functions (with shared parameters), both func-

tions can both occur in the forward-propagation pass and

are trained simultaneously. Indeed, training C will also

train C−1 and vice versa. The invertible core essentially

weight-ties in the X → Y and Y → X directions.

Given that we use the cycle-consistency loss it may be

asked, why do we go to the trouble of including an invert-

ible network? The reason is two-fold: firstly, while image-

to-image translation is not a bijective task, it is close to bi-

jective. A lot of the visual information in an image x should

reappear in its paired image y, and by symmetry a lot of the

visual information in the image y should appear in x. It

thus seems sensible that the networks F and G should be at

least initialized, if not loosely coupled to be weak inverses

of one another. If the constraint of bijection is too high, then

the models can learn to diverge from bijection via the non-

4722



X

DX

X̃ Ỹ Y

DY

EncX

DecX

C

C−1

DecY

EncY

Figure 2. Schematic of our RevGAN model. Between the low-dimensional image spaces X and Y and their corresponding high-

dimensional feature spaces X̃ and Ỹ we place non-invertible encoder and decoder networks EncX ,DecX ,EncY and DecY . The feature

spaces X̃ and Ỹ are of the same dimension, and between them we place an invertible core network C. We also attach to each image space,

X and Y a domain-specific discriminator, which is used for training with the adversarial loss.

invertible encoders and decoders. Secondly, there is a po-

tent argument for using memory efficient networks in these

memory-expensive, dense, pixel-wise regression tasks. The

use of two separate reversible networks is indeed a possi-

bility for both F and G. These would both have constant

memory complexity in depth. Rather than having two net-

works, we can further reduce the memory budget by a rough

factor of about two by exploiting the loose bijective prop-

erty of the task, sharing the X → Y and Y → X models.

Paired RevGAN We train our paired, reversible, image-

to-image translation model, using the standard Pix2pix loss

functions of Equation 4 from [15], applied in the X → Y

and Y → X directions:

LRevGANpaired = λ(LL1(F ) + LL1(G))

+ LcGAN(F,DY ) + LcGAN(G,DX) (12)

We also experimented with extra input noise for the condi-

tional GAN, but found it not to help.

Unpaired RevGAN For unpaired RevGAN, we adapt the

loss functions of the CycleGAN model [31], by replacing

the L1 loss with a cycle-consistency loss, so the total objec-

tive is:

LRevGANunpaired = LcGAN(F,DY ) + LcGAN(G,DX)

+ ExLcycle(G,F, x) + EyLcycle(F,G, y). (13)

4. Implementation and datasets

The model we describe is very general and so below we

explain in more detail the specifics of how to implement our

paired and unpaired RevGAN models. We present 2D and

3D versions of the reversible models.

4.1. Implementation

Network Architectures We use two main varieties of ar-

chitecture. On the 2D problems, we modify the ResNet

from [31], by replacing the inner convolutions with a re-

versible core. The core consists of 6 or 9 reversible residual

layers, dependent on the dataset—we use 6 reversible resid-

ual layers for the core on 128 × 128 (Cityscapes) data and

9 reversible residual layers on 256 × 256 (Maps) data. A

more detailed description of the network architectures can

be found in the supplementary material. In 3D, we use an

architecture based on the SRCNN of [11] (more details in

supplementary material).

Training details All model parameters were initialized

from a Gaussian distribution with mean 0 and standard de-

viation 0.02. For training we used the Adam optimizer [18]

with a learning rate of 0.0002 (and β1 = 0.5, β2 = 0.999).

We keep the learning rate fixed for the first 100 epochs and

then linearly decay the learning rate to zero over the next

100 epochs, for the 2D models. The 3D models are trained

with a fixed learning rate for 20 epochs. We used a λ factor

of 10 for the unpaired models and a λ factor of 100 for the

paired models.

4.2. Datasets

We run tests on two 2D datasets and one 3D dataset. All

three datasets have paired X and Y domain images, and we

can thus extract quantitative evaluations of image fidelity.

Cityscapes The Cityscapes dataset [8] is comprised of ur-

ban street scenes with high quality pixel-level annotations.

For comparison purposes, we used the same 2975 image

pairs as used in [31] for training and the validation set for

testing. All images were downsampled to 128× 128.

For evaluation, we adopt commonly used semantic seg-

mentation metrics: per-pixel accuracy, per-class accu-

racy and class intersection-over-union. The outputs of

photo→label mappings can directly be evaluated. For the

reverse mapping, label→photo, we use the FCN-Score [31],

by first passing our generated images through a FCN-8s se-

mantic segmentation model [21] separately trained on the

same segmentation task. We then measure the quality of the

4723



Input CycleGAN Unpaired RevGAN (ours) Pix2pix Paired RevGAN (ours)

Figure 3. Test set image mappings on the Cityscapes dataset for the CycleGAN and Pix2pix models, compared to our reversible variants.

TOP: The photo→label mapping. BOTTOM: The label→photo mapping. Notice how in the greatest improvement is between the Cycle-

GAN and our unpaired RevGAN variant; whereas, both the Pix2pix and paired RevGAN models are of comparative visual fidelity. More

results can be found in the supplementary material.

obtained segmentation masks using the same classification

metrics. The intuition behind this (pseudo-)metric is that

the segmentation model should perform well if images gen-

erated by the image-to-image translation model are of high

quality.

Maps The Maps dataset contains 1096 training images

and an equally sized test set carefully scraped from Google

Maps in and around New York City by [15]. The images in

this dataset are downsampled to 256× 256.

We evaluate the outputs with several commonly used

metrics for image-quality: mean absolute error (MAE),

peak signal-to-noise ratio (PSNR) and the structural sim-

ilarity index (SSIM).

HCP Brains The Human Connectome Project dataset

consists of 15 128 × 128 × 128 brain volumes, of which

7 volumes are used for training. The value of each voxel is

a 6D vector representing the 6 free components of a 3 × 3
symmetric diffusion tensor (used to measure water diffusiv-

ity in the brain). The brains are separated into high and low

resolution versions. The low resolution images were up-

sampled using 2× nearest neighbour so the input and output

equal in size. This is a good task to trial on, since superres-

olution in 3D is a memory intensive task. For training, we

split the brain volumes into patches of size 24 × 24 × 24

omitting patches with less than 1% brain matter, resulting

in an average of 112 patches per volume.

We evaluate on full brain volumes with the root mean

squared error (RMSE) between voxels containing brain

matter in the ground-truth and the up-sampled volumes. We

also calculate the error on the interior of the brain, defined

by all voxels that are surrounded with a 5 × 5 cube within

the full brain mask, to stay in line with prior literature [28]

[3].

5. Results

In this section, we evaluate the performance of our paired

and unpaired RevGAN model, both quantitatively and qual-

itatively, against Pix2pix and CycleGAN baselines. Addi-

tionally, we study the scalability of our method in terms of

memory-efficiency and model depth. For easy comparison,

we aim to use the same metrics as used in related literature.

5.1. Qualitative Evaluation

We present qualitative results of the RevGAN model on

the Maps dataset in Figure 4 and on the Cityscapes dataset

in Figure 3. We picked the first images in the dataset to

avoid ‘cherry-picking’ bias. The images are generated by

models with equal parameter counts, indicated with a ‘†’

symbol in the quantitative results of the next section (Table

4, Table 2).

Model Width Params
photo→label label→photo

Per-pixel acc. Per-class acc. Class IOU Per-pixel acc. Per-class acc. Class IOU

CycleGAN (baseline)† 32 3.9 M 0.60 0.27 0.19 0.42 0.15 0.10

Unpaired RevGAN 32 1.3 M 0.52 0.21 0.14 0.36 0.14 0.09

Unpaired RevGAN† 56 3.9 M 0.66 0.25 0.18 0.65 0.24 0.17

Pix2pix (baseline)† 32 3.9 M 0.82 0.43 0.32 0.61 0.22 0.16

Paired RevGAN 32 1.3 M 0.81 0.41 0.31 0.57 0.20 0.15

Paired RevGAN† 56 3.9 M 0.82 0.44 0.33 0.60 0.21 0.16

Table 2. CENTER Classification scores on Cityscapes photo→label. RIGHT FCN-scores on Cityscapes label→photo. TOP Unpaired

models. BOTTOM Paired models. Bold numbers indicate where the best model in that section. Notice that in the sections where the

baseline beats our model, the differences in values are only very small. † Parameter matched architectures

4724



Input CycleGAN Unpaired RevGAN (ours) Pix2pix Paired RevGAN (ours) Ground-truth

Figure 4. Test set image mappings on the Maps dataset. We see from this panel of images that there is no obvious degradation in the quality

of the translated images between the baselines (Pix2pix and CycleGAN) and the reversible variants.

All models are able to produce images of similar or bet-

ter visual quality. The greatest improvement can be seen

in the unpaired model (compare CycleGAN with Unpaired

RevGAN). Both paired tasks are visually more appealing

than the unpaired tasks, which make intuitive sense, since

paired image-to-image translation is an easier task to solve

than the unpaired version. We therefore conclude that the

RevGAN model does not seem to under-perform our non-

reversible baselines in terms of observable visual quality. A

more extensive collection of model outputs can be found in

the supplementary material.

5.2. Quantitative Evaluation

Cityscapes We provide quantitative evaluations of the

performance of our RevGAN model on the Cityscapes

dataset. To ensure fairness, the baselines use the code im-

plementations from the original papers. For our model,

we provide two versions, a low parameter count version

and a parameter matched version . In Table 2 the perfor-

Model RMSE (Interior) RMSE (Total)

Paired w/o LGAN (3D-SRCNN) 7.03 ± 0.31 12.41 ± 0.57

Paired+2R w/o LGAN 7.02 ± 0.32 12.41 ± 0.57

Paired+4R w/o LGAN 6.68 ± 0.30 11.85 ± 0.56

Paired+8R w/o LGAN 18.43 ± 1.03 21.40 ± 0.98

Paired (3D-Pix2pix) 11.94 ± 0.65 20.73 ± 1.05

Paired+2R 9.61 ± 0.40 17.36 ± 0.76

Paired+4R 8.43 ± 0.37 14.81 ± 0.61

Paired+8R 7.82 ± 0.35 13.76 ± 0.60

Unpaired (3D-CycleGAN) 17.23 ± 0.73 26.94 ± 1.20

Unpaired+2R 11.05 ± 0.51 17.76 ± 1.38

Unpaired+4R 18.98 ± 1.22 28.06 ± 1.44

Unpaired+8R 18.96 ± 0.85 27.94 ± 1.09

Table 3. Mean and standard deviation of RMSE scores measured

on the 8 brains in the HPC Brains test set. Notice how in each ex-

periment that the shallowest model is the not the highest perform-

ing. We are able to improve performance, by using deeper models

at the same level of memory complexity as shallow models.

mance on the photo→label mapping is given by segmenta-

tion scores in the center columns and the performance on

the label→photo is given by the FCN-Scores in the right-

hand columns.

In Table 2, we see that on the low parameter and param-

eter matched RevGAN models outperform the CycleGAN

baselines on the per-pixel accuracy. This matches our qual-

itative observations from the previous section. For per-class

and class IOU, we also beat the baseline on label→photo,

and from similar or marginally worse on the photo→label

task.

On the paired tasks we see that the results are more

mixed and we perform roughly similar to the Pix2pix base-

line, again matching our qualitative observations. We pre-

sume that the paired task is already fairly easy and thus

the baseline performance is saturated. Thus introducing

our model will do nothing to improve the visual quality

of outputs. On the other hand, the unpaired task is harder

and so the provision of by-design, approximately-inverse

photo→label and label→photo generators improves visual

quality. On the paired task, the main benefit comes in the

form of the memory complexity (see Section 5.4), but on

the unpaired task the RevGAN maintains low memory com-

plexity, while generally improving numerical performance.

Maps Results on the Maps dataset are shown in Table 4,

which indicate that the RevGAN model performs similarly

and sometimes better compared to the baselines. Again,

similarly to the Cityscapes experiment, we see that the

biggest improvements are found on the unpaired tasks;

whereas, the paired tasks demonstrate comparable perfor-

mance.

5.3. 3D Volumes

We also evaluate the performance of our RevGAN model

on a 3D super-resolution problem, using the HTC Brains

4725



Model Width Params
maps→satellite satellite→maps

MAE PSNR SSIM MAE PSNR SSIM

CycleGAN † 32 5.7 M 139.85 ± 15.52 14.62 ± 1.16 0.31 ± 0.05 138.86 ± 20.57 26.25 ± 3.64 0.81 ± 0.06

Unpaired RevGAN 32 1.7 M 133.57 ± 18.09 14.59 ± 0.96 0.31 ± 0.05 142.56 ± 18.94 26.23 ± 3.89 0.81 ± 0.06

Unpaired RevGAN † 58 5.6 M 134.63 ± 14.25 14.54 ± 1.09 0.30 ± 0.06 148.98 ± 16.83 25.47 ± 4.27 0.80 ± 0.08

Unpaired RevGAN 64 6.8 M 135.48 ± 19.19 14.55 ± 1.24 0.26 ± 0.04 133.12 ± 17.18 23.66 ± 2.80 0.67 ± 0.10

Pix2pix † 32 5.7 M 139.63 ± 13.14 14.78 ± 1.08 0.30 ± 0.05 129.16 ± 16.11 27.11 ± 3.11 0.82 ± 0.04

Paired RevGAN 32 1.7 M 139.23 ± 12.76 14.73 ± 1.07 0.30 ± 0.05 129.80 ± 15.54 26.84 ± 3.35 0.81 ± 0.05

Paired RevGAN † 58 5.6 M 140.74 ± 12.45 14.91 ± 1.13 0.31 ± 0.05 128.55 ± 12.71 27.27 ± 3.12 0.82 ± 0.05

Paired RevGAN 64 6.8 M 140.59 ± 13.64 14.85 ± 1.20 0.31 ± 0.06 133.09 ± 12.09 27.37 ± 3.06 0.82 ± 0.04

Table 4. Image quality on Maps dataset. Notice how in most of the experiments that the RevGAN performs better than the baseline. †

Parameter matched architectures

dataset of [28]. As baseline, we use a simple SRCNN model

[11] (see supplementary material for architectural details)

consisting of a 3 × 3 × 3 convolutional layer as encoder,

followed by a 1× 1× 1 convolutional layer as decoder. For

the discriminator, we use a 3D variant of the PatchGAN also

used in [31]. The RevGAN model, extends the architecture

by inserting an invertible core between the encoder and the

decoder.

As can be seen in Figure 5, we obtain higher quality re-

sults using models with additional reversible residual lay-

ers. Of course, it is not unusual that deeper models result in

higher quality predictions. Increasing the model size, how-

ever, is often unfeasible due to memory constraints. Fitting

the activations in GPU memory can be particularly difficult

when dealing with large 3D volumes. This study suggests

that we can train deeper neural image-to-image translation

models by adding reversible residual layers to existing ar-

chitectures, without requiring more memory to store model

activations.

With and without adversarial loss We performed the ex-

periments on paired models with and without the adverarial

loss LGAN . We found that models without such loss gener-

ally perform better in terms of pixel-distance, but that mod-

els with an adversarial loss typically obtain higher quality

results upon visual inspection. A possible explanation of

this phenomenon could be that models that solely minimize

a pixel-wise distance, such as L1 or L2, tend to ‘average

out’ or blur the aleatoric uncertainty (natural diversity) that

exists in the data, in order to obtain a low average loss. An

adversarial loss enforces the model to output an image that

could have been sampled from this uncertain distribution

(thereby introduce realistic looking noise), often resulting

in less blurry and visually more compelling renderings, but

with a potentially higher pixel-wise error.

5.4. Introspection

Memory usage In this experiment, we evaluate the GPU

memory consumption of our RevGAN model for increas-

ing depths and compare it with a CycleGAN baseline. We

kept the widths of both models fixed at such a value that the

model parameters are approximately equal (both ∼3.9 M)

at depth 6.

As can be seen from Table 5, the total memory usage

increases for deeper networks in both models. In contrast

to CycleGAN, however, the memory cost to store activa-

tions stays constant on the RevGAN model. A 6 layer Cy-

cleGAN model has the same total memory footprint of an

unpaired RevGAN with 18-30 layers. Note that for con-

volutional layers the memory cost of storing the model is

fixed given the network architecture, while the memory us-

age cost to store activations also depends on the size of the

data. Therefore, reducing the memory cost of the activa-

Paired Unpaired

LR Input Ground-truth
SRCNN

(3D-Pix2pix)
RMSE

SRCNN+4R (Ours)

(Paired 3D-RevGAN)
RMSE

SRCNN

(3D-CycleGAN)
RMSE

SRCNN+2R (Ours)

(Unpaired 3D-RevGAN)
RMSE

Figure 5. Visualization of mean diffusivity maps on an sagittal slices (top) and axial slices (bottom) of the first brain in the HCP Brain test

set. From left to right: low-resolution input, high-resolution ground-truth, paired model without reversible layers (SRCNN-3D-Pix2pix),

paired model with reversible layers (Paired 3D-RevGAN), unpaired model without reversible layers (SRCNN-3D-CycleGAN) and an

unpaired model with reversible layers (Unpaired 3D-RevGAN).

4726



Depth
CycleGAN Unpaired RevGAN

Model Activations Model Activations

6 434.3 + 752.0 374.4 + 646.1

9 482.3 + 949.0 385.4 + 646.1

12 530.3 + 1148.1 398.5 + 646.1

18 626.3 + 1543.9 423.4 + 646.1

30 818.7 + 2335.8 626.3 + 646.1

Table 5. Memory usage on GPU measured in MiB on a single

Nvidia Tesla K40m GPU on the Maps dataset (lower is better).

Both the CycleGAN and unpaired RevGAN have a similar number

of parameters.

tions becomes particularly important when training models

on larger data sizes (e.g. higher image resolutions or in-

creased batch sizes).

Scalability Reversible architectures can be trained arbi-

trarily deep without increasing the memory cost needed to

store activations. We evaluate the performance of larger

RevGAN models on the Cityscapes dataset.

As shown in Figure 6, with successive increases in depth,

the performance of the RevGAN model increases on the

Cityscapes task. This effect seems to hold up until a cer-

tain depth (∼ 12− 18) after which we find a slight decrease

in performance again. We presume this decrease in perfor-

mance is due to the longer training times of deeper mod-

els, which we have not be able to train to full convergence

due to time-budgeting issues. Keep in mind that we tried to

keep our network architectures and training parameters as

close as possible to networks used in the original Pix2pix

and CycleGAN models. Other research suggests that train-

ing models with much deeper reversible architectures can

be very effective [5]. We leave the exploration of alterna-

tive reversible architectures to future work.

(a) Per-pixel accuracy against

depth.

(b) Memory usage against depth.

Figure 6. Comparison of per-pixel accuracy for a width 64

RevGAN evaluated after 75 epochs and memory usage on

Cityscapes dataset.

6. Limitations and Discussion

Our results indicate that we can train image-to-image

translation models with close to constant memory require-

ments in depth (see Table 5). This enables us to scale up to

very deep architectures. Our ablation studies also show that

increasing depth can lead to higher quantitative results in

terms of various semantic segmentation metrics. This abil-

ity to scale up, however, trades memory for time, and so

there is a trade-off to be considered in practical situations

where we may be concerned about how long to spend in the

development phase of such models.

We have also demonstrated empirically that given a con-

strained budget of trainable parameters, we are able to

achieve improved performance on the Cityscapes and Maps

datasets, especially for of an unpaired training regime. We

accredit two mechanisms for this observation.

Due to the nature of the problem, our network is not

fully invertible. As a result, we still need to use the cycle-

consistency loss, which requires two forward propagation

passes and two backward passes through the model. A

possible way to circumvent using the the cycle-consistency

loss is to design the encoders and decoders to be analyti-

cally pseudo-invertible. We in fact did experiments on this,

by formulating the (strided-)convolutions as Toeplitz ma-

trixvector products [23]. Unfortunately, we found that ex-

act pseudo-invertibility is computationally too slow to run.

Another issue with our setup is that two discriminators are

required during training time (one of each domain). These

are not used at test time, and can thus be considered as su-

perfluous networks, requiring a lot of extra memory. That

said, this is a general problem with CycleGAN and Pix2pix

models in general.

7. Conclusion

In this paper we have proposed a new image-to-image

translation model using reversible residual layers. The pro-

posed model is approximately invertible by design, essen-

tially weight-tying in the forward and backward direction,

hence training from domain X to domain Y simulaneously

trains the mapping from Y to X . We demonstrate equiv-

alent or improved performance in terms of image quality,

compared to similar non-reversible methods. Additionally,

we show that our model is more memory efficient, because

activations of reversible residual layers do not have to be

stored to perform backpropagation.

In future work we plan to explore techniques to get rid of

the cycle-consistency loss, so that the network is automati-

cally cycle-consistent to begin with.

4727



References

[1] L. Ardizzone, J. Kruse, S. Wirkert, D. Rahner, E. W. Pelle-

grini, R. S. Klessen, L. Maier-Hein, C. Rother, and U. Köthe.

Analyzing inverse problems with invertible neural networks.

arXiv preprint arXiv:1808.04730, 2018.

[2] S. Arora and Y. Zhang. Do gans actually learn the distribu-

tion? an empirical study. CoRR, abs/1706.08224, 2017.

[3] S. B. Blumberg, R. Tanno, I. Kokkinos, and D. C. Alexan-

der. Deeper image quality transfer: Training low-memory

neural networks for 3d images. In International Conference

on Medical Image Computing and Computer-Assisted Inter-

vention, pages 118–125. Springer, 2018.

[4] A. Brock, J. Donahue, and K. Simonyan. Large scale gan

training for high fidelity natural image synthesis. arXiv

preprint arXiv:1809.11096, 2018.

[5] B. Chang, L. Meng, E. Haber, L. Ruthotto, D. Begert, and

E. Holtham. Reversible architectures for arbitrarily deep

residual neural networks. arXiv preprint arXiv:1709.03698,

2017.

[6] T. Chen, B. Xu, C. Zhang, and C. Guestrin. Training

deep nets with sublinear memory cost. arXiv preprint

arXiv:1604.06174, 2016.

[7] Z. Cheng, Q. Yang, and B. Sheng. Deep colorization. In

2015 IEEE International Conference on Computer Vision,

ICCV 2015, Santiago, Chile, December 7-13, 2015, pages

415–423, 2015.

[8] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler,

R. Benenson, U. Franke, S. Roth, and B. Schiele. The

cityscapes dataset for semantic urban scene understanding.

In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 3213–3223, 2016.

[9] L. Dinh, D. Krueger, and Y. Bengio. Nice: Non-

linear independent components estimation. arXiv preprint

arXiv:1410.8516, 2014.

[10] L. Dinh, J. Sohl-Dickstein, and S. Bengio. Density estima-

tion using real nvp. arXiv preprint arXiv:1605.08803, 2016.

[11] C. Dong, C. C. Loy, K. He, and X. Tang. Learning a

deep convolutional network for image super-resolution. In

European conference on computer vision, pages 184–199.

Springer, 2014.

[12] L. A. Gatys, A. S. Ecker, and M. Bethge. Image style trans-

fer using convolutional neural networks. In 2016 IEEE Con-

ference on Computer Vision and Pattern Recognition, CVPR

2016, Las Vegas, NV, USA, June 27-30, 2016, pages 2414–

2423, 2016.

[13] A. N. Gomez, M. Ren, R. Urtasun, and R. B. Grosse. The re-

versible residual network: Backpropagation without storing

activations. In Advances in Neural Information Processing

Systems, pages 2214–2224, 2017.

[14] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,

D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Gen-

erative adversarial nets. In Advances in neural information

processing systems, pages 2672–2680, 2014.

[15] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-

to-image translation with conditional adversarial networks.

arXiv preprint, 2017.

[16] J.-H. Jacobsen, A. Smeulders, and E. Oyallon. i-revnet:

Deep invertible networks. arXiv preprint arXiv:1802.07088,

2018.

[17] T. Karras, T. Aila, S. Laine, and J. Lehtinen. Progressive

growing of gans for improved quality, stability, and variation.

CoRR, abs/1710.10196, 2017.

[18] D. P. Kingma and J. Ba. Adam: A method for stochastic

optimization. arXiv preprint arXiv:1412.6980, 2014.

[19] D. P. Kingma and P. Dhariwal. Glow: Generative

flow with invertible 1x1 convolutions. arXiv preprint

arXiv:1807.03039, 2018.

[20] D. P. Kingma, T. Salimans, R. Jozefowicz, X. Chen,

I. Sutskever, and M. Welling. Improved variational inference

with inverse autoregressive flow. In Advances in Neural In-

formation Processing Systems, pages 4743–4751, 2016.

[21] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional

networks for semantic segmentation. In Proceedings of the

IEEE conference on computer vision and pattern recogni-

tion, pages 3431–3440, 2015.

[22] J. Martens and I. Sutskever. Training deep and recurrent net-

works with hessian-free optimization. In Neural networks:

Tricks of the trade, pages 479–535. Springer, 2012.

[23] M. Matuson. Svd pseudo-inverse deconvolution of two-

dimensional arrays. Technical report, Pennsylvania State

University Park Applied Research Lab, 1985.

[24] M. Mirza and S. Osindero. Conditional generative adversar-

ial nets. CoRR, abs/1411.1784, 2014.

[25] P. Ochs, T. Meinhardt, L. Leal-Taixé, and M. Möller. Lift-

ing layers: Analysis and applications. In Computer Vision

- ECCV 2018 - 15th European Conference, Munich, Ger-

many, September 8-14, 2018, Proceedings, Part I, pages 53–

68, 2018.

[26] G. Perarnau, J. van de Weijer, B. Raducanu, and J. M.

Álvarez. Invertible conditional gans for image editing.

CoRR, abs/1611.06355, 2016.

[27] D. J. Rezende and S. Mohamed. Variational inference with

normalizing flows. arXiv preprint arXiv:1505.05770, 2015.

[28] R. Tanno, D. E. Worrall, A. Ghosh, E. Kaden, S. N.

Sotiropoulos, A. Criminisi, and D. C. Alexander. Bayesian

image quality transfer with cnns: Exploring uncertainty in

dmri super-resolution. In International Conference on Med-

ical Image Computing and Computer-Assisted Intervention,

pages 611–619. Springer, 2017.

[29] J. Xie, L. Xu, and E. Chen. Image denoising and inpainting

with deep neural networks. In Advances in Neural Infor-

mation Processing Systems 25: 26th Annual Conference on

Neural Information Processing Systems 2012. Proceedings

of a meeting held December 3-6, 2012, Lake Tahoe, Nevada,

United States., pages 350–358, 2012.

[30] H. Zhao, O. Gallo, I. Frosio, and J. Kautz. Loss functions for

image restoration with neural networks. IEEE Trans. Com-

putational Imaging, 3(1):47–57, 2017.

[31] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-

to-image translation using cycle-consistent adversarial net-

works. arXiv preprint, 2017.

4728


