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Abstract

The Pix2pix [15] and CycleGAN [31] losses have vastly
improved the qualitative and quantitative visual quality of
results in image-to-image translation tasks. We extend this
framework by exploring approximately invertible architec-
tures which are well suited to these losses. These architec-
tures are approximately invertible by design and thus par-
tially satisfy cycle-consistency before training even begins.
Furthermore, since invertible architectures have constant
memory complexity in depth, these models can be built ar-
bitrarily deep. We are able to demonstrate superior quan-
titative output on the Cityscapes and Maps datasets at near
constant memory budget.

1. Introduction

Computer vision was once considered to span a great
many disparate problems, such as superresolution [11], col-
orization [7], denoising and inpainting [29], or style transfer
[12]. Some of these challenges border on computer graph-
ics (e.g. style transfer), while others are more closely related
to numerical problems in the sciences (e.g. superresolution
of medical images [28]). With the new advances of modern
machine learning, many of these tasks have been unified
under the term of image-to-image translation [15].

Mathematically, given two image domains X and Y, the
task is to find or learn a mapping F' : X — Y, based
on either paired examples {(z;,y;)} or unpaired examples
{z;} U{y;}. Let’s take the example of image superreso-
lIution. Here X may represent the space of low-resolution
images, and Y would represent the corresponding space
of high-resolution images. We might equivalently seek to
learn a mapping G : Y — X. To learn both F' and
G it would seem sufficient to use the standard supervised
learning techniques on offer, using convolutional neural net-
works (CNNs) for F' and G. For this, we require paired
training data and a loss function ¢ to measure performance.
In the absence of paired training data, we can instead exploit
the reciprocal relationship between F' and G. Note how we
expect the compositions G o F ~ Id and F o G ~ Id,
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where Id is the identity. This property is known as cycle-
consistency [31]. The unpaired training objective is then to
minimize ¢(Go F(z), z) or {(FoG(y), y) with respect to F’
and G, across the whole training set. Notice how in both of
these expressions, we never require explicit pairs (z;, y;).
Naturally, in superresolution exact equality to the identity is
impossible, because the upsampling task F' is one-to-many,
and the downsampling task GG is many-to-one.

The problem with the cycle-consistency technique is that
while we can insert whatever F' and whatever G we deem
appropriate into the model, we avoid making use of the fact
that F' and G are approximate inverses of one another. In
this paper, we consider constructing F' and G as approxi-
mate inverses, by design. This is not a replacement to cycle-
consistency, but an adjunct to it. A key benefit of this is that
we need not have a separate X — Y and Y — X map-
ping, but just a single X — Y model, which we can run in
reverse to approximate ¥ — X. Furthermore, note by ex-
plicitly weight-tying the X — Y and Y — X models, we
can see that training in the X — Y direction will also train
the reverse Y — X direction, which does not necessarily
occur with separate models. Lastly, there is also a compu-
tational benefit that invertible networks are very memory-
efficient [13]; intermediate activations do not need to be
stored to perform backpropagation. As a result, invertible
networks can be built arbitrarily deep, while using a fixed
memory-budget—this is relevant because recent work has
suggested a trend of wider and deeper networks perform-
ing better in image generation tasks [4]. Furthermore, this
enables dense pixel-wise translation models to be shifted to
memory-intensive arenas, such as 3D (see Section 5.3 for
our experiements on dense MRI superresolution).

Our results indicate that by using invertible networks
as the central workhorse in a paired or unpaired image-to-
image translation model such as Pix2pix [15] or CycleGAN
[31], we can not only reduce memory overhead, but also
increase fidelity of the output. We demonstrate this on the
Cityscapes and Maps datasets in 2D and on a diffusion ten-
sor image MRI dataset for the 3D scenario (see Section 5).
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2. Background and Related Work

In this section, we recap the basics behind Generative
Adversarial Networks (GANSs), cycle-consistency, and re-
versible/invertible networks.

2.1. Generative Adversarial Networks (GANSs)

Generative adversarial networks (GANs) [14] enjoy
huge success in tasks such as image generation [4], image
interpolation [17], and image re-editing [26]. They consist
of two components, a generator F' : Z — Y mapping ran-
dom noise z € Z to images y € Y and a discriminator
D : Y — [0,1] mapping images y € Y to probabilities.
Given a set of training images {y1,y2, ...}, the generator
produces ‘fake’ images y. = F(2),z ~ p(z), where p(z)
is a simple distribution such as a standard Gaussian, and the
discriminator tries to predict the probability that the image
was from the true image distribution. For training, an ad-
versarial loss Lgan 1s defined:

LGAN(FvD) = ]Ey IOgD(y) +Ez IOg(]- - D(F(Z))) (1)

This loss is trained using a minimax regime where intu-
itively we encourage the generator to fool the discrimina-
tor, while also training the discriminator to guess whether
the generator created an image or not. Mathematically this
game [14] is

F* = arg mpin max Loan(F, D). 2)

At test time, the discriminator is discarded and the trained
generator is used to hallucinate fake images from the same
distribution [2] as the training set. The generator can be
conditioned on an input image as well. This setup is called
a conditional GAN [24].

2.2. Image-to-Image Translation

In a standard (paired) image-to-image translation prob-
lem [15], we seek to learn the mapping F': X — Y, where
X and Y are corresponding spaces of images. It is natural
to model F' with a convolutional neural network (CNN). To
train this CNN we minimize a loss function

L(F) =+ 3" ((F (). ) @
i=1

where £ is a loss function defined in the pixel-space between
the prediction F'(x;) and the target y;. Traditional image-
to-image translation tasks relying on pixel-level loss func-
tions are hampered by the fact that these losses do not typ-
ically account for inter-pixel correlations [30], for instance,
Lq-losses treat each pixel as independent. Instead, since
GANSs do not apply the loss per-pixel, they can account for
these inter-pixel correlational structures. GANs can be co-
opted for image-to-image translation by adding the adver-
sarial loss on top of a standard pixel-level L; loss function.

This was first performed in the Pix2pix model [15], which
is for paired image-to-image translation problems. Pix2pix
replaces F' with a conditional generator F' : X X Z — Y,
where Z is the domain of the random noise; although, in
practice, we usually ignore the additional noise input [31].
The model combines a L-loss that enforces the model to
map images to the paired translations in a supervised man-
ner with an adversarial loss that enforces the model to adopt
the style of the target domain. The loss is

F* = arg m}n max Legan(F, D) + AL (F)  (4)

where

Lia(F) = Eoylly = F(2)[l1 ®)
Legan(F, D) = Eq [log D(z) +log(1 — D(F(x))]. (6)

A is a tuneable hyperparameter typically set in the range
10 — 100 [15].

2.3. Cycle-consistency

The CycleGAN model was proposed as an alternative
to Pix2pix for unpaired domains [31]. The model uses
two generators F' and G for the respective mappings be-
tween the two domains X and Y (so, FF : X — Y and
G :Y — X), and two discriminators Dy : X — [0, 1] and
Dy :'Y — [0,1] trained to distinguish real and generated
images in both domains. Since there are no image pairings
between domains, we cannot invoke the Pix2pix loss and in-
stead CycleGAN uses a separate cycle-consistency loss that
penalizes the distances Leycie (G, F, x) = |G o F(z) — |1
and Leyeie (F, G,y) = ||F o G(y) — yl|1 across the training
set. This encourages that the mappings F' and G are loose
inverses of one another. This allows the model to train on
unpaired data. The total loss is

Leyeiegan = Legan(F, Dy) + Legan(G, Dx)
+ EmLcycle(G7 F» w) + ]Echycle(Fa G, y) (7)

Given that ' and G are loose inverses of one another, it
seems wasteful to use separate models to model each. In
this paper, we model F' and G as approximate inverses of
one another. For this, we make use of the new area of in-
vertible neural networks.

2.4. Invertible Neural Networks (INNs)

In recent years, several studies have proposed invertible
neural networks (INNs) in the context of normalizing flow-
based methods [27] [20]. It has been shown that INNs are
capable of generating high quality images [19], perform
image classification without information loss in the hidden
layers [16] and analyzing inverse problems [1]. Most of the
work on INNs, including this study, heavily relies upon the
transformations introduced in NICE [9] later extended in
RealNVP [10]. Although INNs share interesting properties
they remain relatively unexplored.
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Figure 1. Illustration of forward (a) and backward (b) pass of a
residual block in a reversible residual layer. Note, functions NN
and NN2 need not be invertible, hence the layer is very flexible and
in practical terms very easy to implement.
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Additive Coupling In our model, we obtain an invertible
residual layer, as used in [13], using a technique called addi-
tive coupling [9]: first we split an input x (typically over the
channel dimension) into (x1,z2) and then transform them
using arbitrary complex functions NN; and NNy (such as a
ReLU-MLPs) in the form (left):

y1 = 1 + NNy (x2)
Y2 = T2 + NNa(y1)

ry =1y —NNi(z2)  (8)
g =y2 —NNa(y1). (9)

The inverse mappings can be seen on the right. Figure 1
shows a schematic of these equations.

Memory efficiency Interestingly, invertible residual lay-
ers are very memory-efficient because intermediate acti-
vations do not have to be stored to perform backpropaga-
tion [13]. During the backward pass, input activations that
are required for gradient calculations can be (re-)computed
from the output activations because the inverse function is
accessible. This results in a constant spatial complexity
(O(1)) in terms of layer depth (see Table 1).

3. Method

Our goal is to create a memory-efficient image-to-image
translation model, which is approximately invertible by de-
sign. Below we describe the basic outline of our approach
of how to create an approximately-invertible model, which
can be inserted into the existing Pix2pix and CycleGAN
frameworks. We call our model RevGAN.

Technique Spatial Complexity ~Computational

(Activations) Complexity
Naive O(L) O(L)
Checkpointing [22] OL) O(L)
Recursive [6] O(log L) O(Llog L)
Additive Coupling [13] O(1) O(L)

Table 1. Comparison of Spatial and Computational Complexity
copied from [13]. L denotes number of residual layers. Notice
how the spatial complexity of additive coupling is O(1) versus
O(L) for a naive implementation.

Lifting and Projection In general, image-to-image trans-
lation tasks are not one-to-one. As such, a fully invertible
treatment is undesirable, and sometimes in the case of di-
mensionality mismatches, impossible. Furthermore, it ap-
pears that the high-dimensional, overcomplete representa-
tions used by most modern networks lead to faster train-
ing [25] and better all-round performance [4]. We therefore
split the forward F' : X — Y and backward G : ¥ — X
mappings into three components. With each domain, X
and Y, we associate a high-dimensional feature space X
and f’, respectively. There are individual, non-invertible
mappings between each image space and its correspond-
ing high-dimensional feature-space; for example, for image
space X we have Encx : X — X and Decx : X - X.
Encx lifts the image into a higher dimensionality space
and Decy projects the image back down into the low-
dimensional image space. We have used the terms encode
and decode in place of ‘lifting’ and ‘projection’ to stay in
line with the deep learning literature.

Invertible core Between the feature spaces, we then place
an invertible core C' : X — Y, so the full mappings are

FZDCCyOOOEnCX (10)
G = Decx o C~ ! o Ency. (11)

For the invertible cores we use invertible residual networks
based on additive coupling as in [13]. The full mappings I’
and G will only truly be inverses if Encx o Decx = Id and
Ency o Decy = 1d, which cannot be true, since the image
spaces are lower dimensional than the feature spaces. In-
stead, these units are trained to be approximately invertible
pairs via the end-to-end cycle-consistency loss. Since the
encoder and decoder are not necessarily invertible they can
consist of non-invertible operations, such as pooling and
strided convolutions.

Because both the core C' and its inverse C~! are dif-
ferentiable functions (with shared parameters), both func-
tions can both occur in the forward-propagation pass and
are trained simultaneously. Indeed, training C' will also
train C~! and vice versa. The invertible core essentially
weight-ties in the X — Y and Y — X directions.

Given that we use the cycle-consistency loss it may be
asked, why do we go to the trouble of including an invert-
ible network? The reason is two-fold: firstly, while image-
to-image translation is not a bijective task, it is close to bi-
jective. A lot of the visual information in an image x should
reappear in its paired image y, and by symmetry a lot of the
visual information in the image y should appear in x. It
thus seems sensible that the networks F" and G should be at
least initialized, if not loosely coupled to be weak inverses
of one another. If the constraint of bijection is too high, then
the models can learn to diverge from bijection via the non-
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Figure 2. Schematic of our RevGAN model. Between the low-dimensional image spaces X and Y and their corresponding high-
dimensional feature spaces X and Y we place non-invertible encoder and decoder networks Encx, Decx, Ency and Decy. The feature
spaces X and Y are of the same dimension, and between them we place an invertible core network C. We also attach to each image space,
X and Y a domain-specific discriminator, which is used for training with the adversarial loss.

invertible encoders and decoders. Secondly, there is a po-
tent argument for using memory efficient networks in these
memory-expensive, dense, pixel-wise regression tasks. The
use of two separate reversible networks is indeed a possi-
bility for both F' and G. These would both have constant
memory complexity in depth. Rather than having two net-
works, we can further reduce the memory budget by a rough
factor of about two by exploiting the loose bijective prop-
erty of the task, sharing the X — Y and Y — X models.

Paired RevGAN We train our paired, reversible, image-
to-image translation model, using the standard Pix2pix loss
functions of Equation 4 from [15], applied in the X — Y
and Y — X directions:

LrevGanpaired = AM(LLi (F) + L1 (G))
+ Legan(F, Dy) + Legan(G, Dx ) (12)

We also experimented with extra input noise for the condi-
tional GAN, but found it not to help.

Unpaired RevGAN For unpaired RevGAN, we adapt the
loss functions of the CycleGAN model [31], by replacing
the L loss with a cycle-consistency loss, so the total objec-
tive is:

LRevGANunpaired = LCGAN(Fv DY) + LCGAN (Gv DX)
+Echyc]e(G,F, x) —|—Echycle(F,G,y). (13)

4. Implementation and datasets

The model we describe is very general and so below we
explain in more detail the specifics of how to implement our
paired and unpaired RevGAN models. We present 2D and
3D versions of the reversible models.

4.1. Implementation

Network Architectures We use two main varieties of ar-
chitecture. On the 2D problems, we modify the ResNet

from [31], by replacing the inner convolutions with a re-
versible core. The core consists of 6 or 9 reversible residual
layers, dependent on the dataset—we use 6 reversible resid-
ual layers for the core on 128 x 128 (Cityscapes) data and
9 reversible residual layers on 256 x 256 (Maps) data. A
more detailed description of the network architectures can
be found in the supplementary material. In 3D, we use an
architecture based on the SRCNN of [11] (more details in
supplementary material).

Training details All model parameters were initialized
from a Gaussian distribution with mean O and standard de-
viation 0.02. For training we used the Adam optimizer [18]
with a learning rate of 0.0002 (and 3, = 0.5, 82 = 0.999).
We keep the learning rate fixed for the first 100 epochs and
then linearly decay the learning rate to zero over the next
100 epochs, for the 2D models. The 3D models are trained
with a fixed learning rate for 20 epochs. We used a \ factor
of 10 for the unpaired models and a A factor of 100 for the
paired models.

4.2. Datasets

We run tests on two 2D datasets and one 3D dataset. All
three datasets have paired X and Y domain images, and we
can thus extract quantitative evaluations of image fidelity.

Cityscapes The Cityscapes dataset [8] is comprised of ur-
ban street scenes with high quality pixel-level annotations.
For comparison purposes, we used the same 2975 image
pairs as used in [31] for training and the validation set for
testing. All images were downsampled to 128 x 128.

For evaluation, we adopt commonly used semantic seg-
mentation metrics: per-pixel accuracy, per-class accu-
racy and class intersection-over-union. The outputs of
photo—1label mappings can directly be evaluated. For the
reverse mapping, label—photo, we use the FCN-Score [31],
by first passing our generated images through a FCN-8s se-
mantic segmentation model [21] separately trained on the
same segmentation task. We then measure the quality of the
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Figure 3. Test set image mappings on the Cityscapes dataset for the CycleGAN and Pix2pix models, compared to our reversible variants.
Top: The photo—label mapping. BOTTOM: The label—photo mapping. Notice how in the greatest improvement is between the Cycle-
GAN and our unpaired RevGAN variant; whereas, both the Pix2pix and paired RevGAN models are of comparative visual fidelity. More

results can be found in the supplementary material.

obtained segmentation masks using the same classification
metrics. The intuition behind this (pseudo-)metric is that
the segmentation model should perform well if images gen-
erated by the image-to-image translation model are of high
quality.

Maps The Maps dataset contains 1096 training images
and an equally sized test set carefully scraped from Google
Maps in and around New York City by [15]. The images in
this dataset are downsampled to 256 x 256.

We evaluate the outputs with several commonly used
metrics for image-quality: mean absolute error (MAE),
peak signal-to-noise ratio (PSNR) and the structural sim-
ilarity index (SSIM).

HCP Brains The Human Connectome Project dataset
consists of 15 128 x 128 x 128 brain volumes, of which
7 volumes are used for training. The value of each voxel is
a 6D vector representing the 6 free components of a 3 x 3
symmetric diffusion tensor (used to measure water diffusiv-
ity in the brain). The brains are separated into high and low
resolution versions. The low resolution images were up-
sampled using 2 X nearest neighbour so the input and output
equal in size. This is a good task to trial on, since superres-
olution in 3D is a memory intensive task. For training, we
split the brain volumes into patches of size 24 x 24 x 24

omitting patches with less than 1% brain matter, resulting
in an average of 112 patches per volume.

We evaluate on full brain volumes with the root mean
squared error (RMSE) between voxels containing brain
matter in the ground-truth and the up-sampled volumes. We
also calculate the error on the interior of the brain, defined
by all voxels that are surrounded with a 5 x 5 cube within
the full brain mask, to stay in line with prior literature [28]

[3].
5. Results

In this section, we evaluate the performance of our paired
and unpaired RevGAN model, both quantitatively and qual-
itatively, against Pix2pix and CycleGAN baselines. Addi-
tionally, we study the scalability of our method in terms of
memory-efficiency and model depth. For easy comparison,
we aim to use the same metrics as used in related literature.

5.1. Qualitative Evaluation

We present qualitative results of the RevGAN model on
the Maps dataset in Figure 4 and on the Cityscapes dataset
in Figure 3. We picked the first images in the dataset to
avoid ‘cherry-picking’ bias. The images are generated by
models with equal parameter counts, indicated with a ‘}’
symbol in the quantitative results of the next section (Table
4, Table 2).

. hoto—label label—photo
Model Width  Params Per-pixel acc. pPer—class acc. Class IOU Per-pixel acc. Per—clzl:ss acc. Class IOU
CycleGAN (baseline) 32 39M 0.60 0.27 0.19 0.42 0.15 0.10
Unpaired RevGAN 32 1.3M 0.52 0.21 0.14 0.36 0.14 0.09
Unpaired RevGAN' 56 39M 0.66 0.25 0.18 0.65 0.24 0.17
Pix2pix (baseline) 32 39M 0.82 0.43 0.32 0.61 0.22 0.16
Paired RevGAN 32 1.3M 0.81 0.41 0.31 0.57 0.20 0.15
Paired RevGANT 56 39M 0.82 0.44 0.33 0.60 0.21 0.16

Table 2. CENTER Classification scores on Cityscapes photo—label. RIGHT FCN-scores on Cityscapes label—photo. TOP Unpaired
models. BOTTOM Paired models. Bold numbers indicate where the best model in that section. Notice that in the sections where the
baseline beats our model, the differences in values are only very small. T Parameter matched architectures

4724



CycleGAN

Unpaired RevGAN (ours)

Ground-truth

Pix2pix Paired RevGAN (ours)

Figure 4. Test set image mappings on the Maps dataset. We see from this panel of images that there is no obvious degradation in the quality
of the translated images between the baselines (Pix2pix and CycleGAN) and the reversible variants.

All models are able to produce images of similar or bet-
ter visual quality. The greatest improvement can be seen
in the unpaired model (compare CycleGAN with Unpaired
RevGAN). Both paired tasks are visually more appealing
than the unpaired tasks, which make intuitive sense, since
paired image-to-image translation is an easier task to solve
than the unpaired version. We therefore conclude that the
RevGAN model does not seem to under-perform our non-
reversible baselines in terms of observable visual quality. A
more extensive collection of model outputs can be found in
the supplementary material.

5.2. Quantitative Evaluation

Cityscapes We provide quantitative evaluations of the
performance of our RevGAN model on the Cityscapes
dataset. To ensure fairness, the baselines use the code im-
plementations from the original papers. For our model,
we provide two versions, a low parameter count version
and a parameter matched version . In Table 2 the perfor-

Model RMSE (Interior) RMSE (Total)
Paired w/o Lgan (3D-SRCNN) 7.03 + 0.31 12.41 £ 0.57
Paired+2R w/o Lgan 7.02 + 0.32 12.41 + 0.57
Paired+4R w/o Lgan 6.68 £ 0.30 11.85 + 0.56
Paired+8R w/o Lgan 18.43 £ 1.03 21.40 £0.98
Paired (3D-Pix2pix) 11.94 £ 0.65 20.73 £ 1.05
Paired+2R 9.61 + 0.40 17.36 £ 0.76
Paired+4R 8.43 +0.37 14.81 £ 0.61
Paired+8R 7.82 £0.35 13.76 + 0.60
Unpaired (3D-CycleGAN) 17.23 £0.73 26.94 +£1.20
Unpaired+2R 11.05 £ 0.51 17.76 + 1.38
Unpaired+4R 18.98 £ 1.22 28.06 + 1.44
Unpaired+8R 18.96 + 0.85 27.94 £ 1.09

Table 3. Mean and standard deviation of RMSE scores measured
on the 8 brains in the HPC Brains test set. Notice how in each ex-
periment that the shallowest model is the not the highest perform-
ing. We are able to improve performance, by using deeper models
at the same level of memory complexity as shallow models.

mance on the photo—label mapping is given by segmenta-
tion scores in the center columns and the performance on
the label—photo is given by the FCN-Scores in the right-
hand columns.

In Table 2, we see that on the low parameter and param-
eter matched RevGAN models outperform the CycleGAN
baselines on the per-pixel accuracy. This matches our qual-
itative observations from the previous section. For per-class
and class IOU, we also beat the baseline on label—photo,
and from similar or marginally worse on the photo—label
task.

On the paired tasks we see that the results are more
mixed and we perform roughly similar to the Pix2pix base-
line, again matching our qualitative observations. We pre-
sume that the paired task is already fairly easy and thus
the baseline performance is saturated. Thus introducing
our model will do nothing to improve the visual quality
of outputs. On the other hand, the unpaired task is harder
and so the provision of by-design, approximately-inverse
photo—label and label—photo generators improves visual
quality. On the paired task, the main benefit comes in the
form of the memory complexity (see Section 5.4), but on
the unpaired task the RevGAN maintains low memory com-
plexity, while generally improving numerical performance.

Maps Results on the Maps dataset are shown in Table 4,
which indicate that the RevGAN model performs similarly
and sometimes better compared to the baselines. Again,
similarly to the Cityscapes experiment, we see that the
biggest improvements are found on the unpaired tasks;
whereas, the paired tasks demonstrate comparable perfor-
mance.

5.3. 3D Volumes

We also evaluate the performance of our RevGAN model
on a 3D super-resolution problem, using the HTC Brains
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. maps—satellite satellite—maps
Model Width  Params —gpap PSNR SSIM MAE PSNR SSIM
CycleGAN T 32 57M 13985+£1552 14.62+1.16 0.31+0.05 138.86 £ 20.57 26.25 +3.64 0.81 £0.06
Unpaired RevGAN 32 1.7M 13357 £18.09 14.59 £0.96 0.31 +0.05 142.56 £ 18.94 26.23 +3.89 0.81 £0.06
Unpaired RevGAN T 58 S56M 13463 +£1425 1454+1.09 0.30=+0.06 148.98 £ 16.83 2547 +4.27 0.80+0.08
Unpaired RevGAN 64 6.8M 13548 £19.19 1455+1.24 0.26+0.04 133.12 + 17.18  23.66 £2.80 0.67 +=0.10
Pix2pix T 32 57M 139.63 £13.14 1478 £1.08 0.30 = 0.05 129.16 £ 16.11 27.11+3.11 0.82 £0.04
Paired RevGAN 32 1.7M 13923 £12.76 14.73+1.07 0.30 = 0.05 129.80 £ 15.54 26.84 £3.35 0.81 £0.05
Paired RevGAN f 58 S56M 14074 £1245 1491+ 1.13 0.31+0.05 128.55 + 12.71 27.27 £3.12 0.82 +0.05
Paired RevGAN 64 6.8M 14059 £13.64 14.85+1.20 0.31+0.06 133.09 +£ 12.09 2737 £3.06 0.82 £ 0.04

Table 4. Image quality on Maps dataset. Notice how in most of the experiments that the RevGAN performs better than the baseline.

Parameter matched architectures

dataset of [28]. As baseline, we use a simple SRCNN model
[11] (see supplementary material for architectural details)
consisting of a 3 X 3 X 3 convolutional layer as encoder,
followed by a 1 x 1 x 1 convolutional layer as decoder. For
the discriminator, we use a 3D variant of the PatchGAN also
used in [31]. The RevGAN model, extends the architecture
by inserting an invertible core between the encoder and the
decoder.

As can be seen in Figure 5, we obtain higher quality re-
sults using models with additional reversible residual lay-
ers. Of course, it is not unusual that deeper models result in
higher quality predictions. Increasing the model size, how-
ever, is often unfeasible due to memory constraints. Fitting
the activations in GPU memory can be particularly difficult
when dealing with large 3D volumes. This study suggests
that we can train deeper neural image-to-image translation
models by adding reversible residual layers to existing ar-
chitectures, without requiring more memory to store model
activations.

With and without adversarial loss We performed the ex-
periments on paired models with and without the adverarial
loss Lgan - We found that models without such loss gener-
ally perform better in terms of pixel-distance, but that mod-
els with an adversarial loss typically obtain higher quality
results upon visual inspection. A possible explanation of

Paired
SRCNN+4R (Ours)
(Paired 3D-RevGAN)

SRCNN

LR Input (3D-Pix2pix)

Ground-truth

-

RMSE

Figure 5. Visualization of mean diffusivity maps on an sagittal slices (top) and axial slices (bottom) of the first brain in the HCP Brain test
set. From left to right: low-resolution input, high-resolution ground-truth, paired model without reversible layers (SRCNN-3D-Pix2pix),

paired model with reversible layers (Paired 3D-RevGAN), unpaired model without reversible layers (SRCNN-3D-CycleGAN) and an
unpaired model with reversible layers (Unpaired 3D-RevGAN).

this phenomenon could be that models that solely minimize
a pixel-wise distance, such as L; or Lo, tend to ‘average
out’ or blur the aleatoric uncertainty (natural diversity) that
exists in the data, in order to obtain a low average loss. An
adversarial loss enforces the model to output an image that
could have been sampled from this uncertain distribution
(thereby introduce realistic looking noise), often resulting
in less blurry and visually more compelling renderings, but
with a potentially higher pixel-wise error.

5.4. Introspection

Memory usage In this experiment, we evaluate the GPU
memory consumption of our RevGAN model for increas-
ing depths and compare it with a CycleGAN baseline. We
kept the widths of both models fixed at such a value that the
model parameters are approximately equal (both ~3.9 M)
at depth 6.

As can be seen from Table 5, the total memory usage
increases for deeper networks in both models. In contrast
to CycleGAN, however, the memory cost to store activa-
tions stays constant on the RevGAN model. A 6 layer Cy-
cleGAN model has the same total memory footprint of an
unpaired RevGAN with 18-30 layers. Note that for con-
volutional layers the memory cost of storing the model is
fixed given the network architecture, while the memory us-
age cost to store activations also depends on the size of the
data. Therefore, reducing the memory cost of the activa-

Unpaired
SRCNN+2R (Ours)
(Unpaired 3D-RevGAN)

SRCNN
(3D-CycleGAN)

Raot Squared Error
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Depth CycleGAN Unpaired RevGAN
Model  Activations Model  Activations
6 4343 +752.0 3744 +646.1
9 482.3  +949.0 3854 +646.1
12 5303 +1148.1 398.5 +646.1
18 626.3 +1543.9 4234 +646.1
30 818.7 +2335.8 626.3 + 646.1

Table 5. Memory usage on GPU measured in MiB on a single
Nvidia Tesla K40m GPU on the Maps dataset (lower is better).
Both the CycleGAN and unpaired RevGAN have a similar number
of parameters.

tions becomes particularly important when training models
on larger data sizes (e.g. higher image resolutions or in-
creased batch sizes).

Scalability Reversible architectures can be trained arbi-
trarily deep without increasing the memory cost needed to
store activations. We evaluate the performance of larger
RevGAN models on the Cityscapes dataset.

As shown in Figure 6, with successive increases in depth,
the performance of the RevGAN model increases on the
Cityscapes task. This effect seems to hold up until a cer-
tain depth (~ 12 — 18) after which we find a slight decrease
in performance again. We presume this decrease in perfor-
mance is due to the longer training times of deeper mod-
els, which we have not be able to train to full convergence
due to time-budgeting issues. Keep in mind that we tried to
keep our network architectures and training parameters as
close as possible to networks used in the original Pix2pix
and CycleGAN models. Other research suggests that train-
ing models with much deeper reversible architectures can
be very effective [5]. We leave the exploration of alterna-
tive reversible architectures to future work.
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(a) Per-pixel accuracy against
depth.

(b) Memory usage against depth.

Figure 6. Comparison of per-pixel accuracy for a width 64
RevGAN evaluated after 75 epochs and memory usage on
Cityscapes dataset.

6. Limitations and Discussion

Our results indicate that we can train image-to-image
translation models with close to constant memory require-
ments in depth (see Table 5). This enables us to scale up to
very deep architectures. Our ablation studies also show that
increasing depth can lead to higher quantitative results in
terms of various semantic segmentation metrics. This abil-
ity to scale up, however, trades memory for time, and so
there is a trade-off to be considered in practical situations
where we may be concerned about how long to spend in the
development phase of such models.

We have also demonstrated empirically that given a con-
strained budget of trainable parameters, we are able to
achieve improved performance on the Cityscapes and Maps
datasets, especially for of an unpaired training regime. We
accredit two mechanisms for this observation.

Due to the nature of the problem, our network is not
fully invertible. As a result, we still need to use the cycle-
consistency loss, which requires two forward propagation
passes and two backward passes through the model. A
possible way to circumvent using the the cycle-consistency
loss is to design the encoders and decoders to be analyti-
cally pseudo-invertible. We in fact did experiments on this,
by formulating the (strided-)convolutions as Toeplitz ma-
trixvector products [23]. Unfortunately, we found that ex-
act pseudo-invertibility is computationally too slow to run.
Another issue with our setup is that two discriminators are
required during training time (one of each domain). These
are not used at test time, and can thus be considered as su-
perfluous networks, requiring a lot of extra memory. That
said, this is a general problem with CycleGAN and Pix2pix
models in general.

7. Conclusion

In this paper we have proposed a new image-to-image
translation model using reversible residual layers. The pro-
posed model is approximately invertible by design, essen-
tially weight-tying in the forward and backward direction,
hence training from domain X to domain Y simulaneously
trains the mapping from Y to X. We demonstrate equiv-
alent or improved performance in terms of image quality,
compared to similar non-reversible methods. Additionally,
we show that our model is more memory efficient, because
activations of reversible residual layers do not have to be
stored to perform backpropagation.

In future work we plan to explore techniques to get rid of
the cycle-consistency loss, so that the network is automati-
cally cycle-consistent to begin with.
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