
APPENDIX

Figure 1: Mixed-reality setting: we insert two new 3D ob-
jects (chairs) into an existing 3D scene. Our goal is to find a
consistent lighting between the existing and newly-inserted
content. In the middle column, we show a naive composit-
ing approach; on the right the results of our approach. The
naive approach does not take the 3D scene and light trans-
port into consideration, and fails to photo-realistically ren-
der the chair.

In this appendix, we provide additional quantitative eval-
uations of our design choices in Sec. A. To this end, we
evaluate the choice of the batch size, the impact of the vari-
ance reduction, and the number of bounces for the inverse
path tracing optimization. In addition, we provide addi-
tional results on scenes with textures, where we evaluate
our subdivision scheme for high-resolution surface material
parameter optimization; see Sec. B. Sec. C presents a quan-
titative comparison to another material estimation method.
In Sec. D, we provide examples for mixed-reality applica-
tion settings where we insert new virtual objects into exist-
ing scenes. Here, the idea is to leverage our optimization
results for lighting and materials in order to obtain a consis-
tent compositing for AR applications. Finally, we discuss
additional implementation details in Sec. E.

A. Qualitative Evaluation of Design Choices

A.1. Choice of Batch Size

In Fig. 2, we evaluate the choice of the batch size for the
optimization. To this end, we assume the compute budget
for all experiments, and plot the results with respect to time
on the x-axis and the `1 loss of our problem (log scale) on
the y-axis. If the batch size is too low (blue curve), then
the estimated gradients are noisy, which leads to a slower
convergence; if batches are too large (gray curve), then we
require too many rays for each gradient step, which would
be used instead to perform multiple gradient update steps.

Figure 2: Convergence with respect to the batch size: in this
experiment, we assume the same compute/time budget for
all experiments (x-axis), but we use different distributions
of rays within each batch; i.e., we try different batch sizes.

Figure 3: Use of Multiple Importance Sampling during path
tracing significantly improves the convergence rate.

A.2. Variance Reduction

In order to speed up the convergence of our algorithm,
we must aim to reduce the variance of the gradients as much
as possible. There are two sources of variance: the Monte
Carlo integration in path tracing and the SGD, since we path
trace only a small fraction of captured pixels in every batch.

As mentioned in the main paper, the gradients of the ren-
dering integral have similar structure to the original integral,
therefore we employ the same importance sampling strat-
egy as in usual path tracing. The path tracing variance is
reduced using Multiple Importance Sampling (i.e., we com-
bine BRDF sampling with explicit light sampling) [5]. We
follow the same computation for estimating the gradients
with respect to our unknowns. A comparison between im-
plementation with and without MIS is shown in Fig. 3.



A.3. Number of Bounces

We argue that most diffuse global illumination effects
can be approximated by as few as two bounces of light.
To this end, we render an image with 10 bounces and use
it as ground truth for our optimization. We try to approx-
imate the ground truth by renderings with one, two, and
three bounces, respectively (see Fig. 4). One bounce corre-
sponds to direct illumination; adding more bounces allows
us to take into account indirect illumination as well. Op-
timization with only a single bounce is the fastest, but the
error remains high even after convergence. Having more
than two bounces leads to high variance and takes a lot of
time to converge. Using two bounces strikes the balance
between convergence speed and accuracy.

Figure 4: A scene rendered with 10 bounces of light is given
as input to our algorithm. We estimate emission and mate-
rial parameters by using one, two, and three bounces during
optimization. Two bounces are enough to capture most of
the diffuse indirect illumination in the scene.

B. Results on Scenes with Textures

In order to evaluate surfaces with high-frequency surface
signal, we consider both real and synthetic scenes with tex-
tured objects. To this end, we optimize first for the light
sources and material parameters on the coarse per-object
resolution. Once converged, we keep the light sources fixed,
and we subdivide all other regions based on the surface tex-
ture where the re-rendering error is high; i.e., we subdivide
every triangle based on the average `2 error of the pixels it
covers, and continue until convergence. This coarse-to-fine
strategy allows us to first separate out material and lighting
in the more well-conditioned setting; in the second step, we
then obtain high-resolution material information. Results
on synthetic data [2] are shown in Fig. 5, and results on real
scenes from Matterport3D [1] are shown in Fig. 6.

Method LIME [4] Ours
Object 1 0.45% 0.00037%
Object 2 1.37% 0.14%

Table 1: We compare the relative error between the esti-
mated diffuse albedo for two objects. We outperform LIME
even though our method is not restricted to the estimation
of only a single material at a time.

C. Additional Comparison to Data-driven Ap-
proaches

We compare our approach to Meka et al. [4] and present
quantitative results in Tab. 1. Please note that our approach
is not limited to a single material of a single object at a time.
The other data-driven references are mostly on planar sur-
faces only and/or assume specific lighting conditions, such
as a single point light close to the surface.

D. Object Insertion in Mixed-reality Settings

One of the primary target applications of our method
is insertion of virtual objects into an existing scene while
maintaining a coherent appearance. Here, the idea is to first
estimate the lighting and material parameters of a given 3D
scene or reconstruction. We then insert a new 3D object
into the environment, and re-render the scene using both
the estimated lighting and material parameters for the al-
ready existing content, and the known intrinsics parameters
for the newly-inserted object. A complete 3D knowledge is
required to produce photorealistic results, in order to take
interreflection and shadow between objects into account.

In Fig. 1, we show an example on a synthetic scene
where we virtually inserted two new chairs. As a baseline,
we consider a naive image compositing approach where the
new object is first lit by spherical harmonics lighting and
then inserted while not considering the rest of the scene; this
is similar to most existing AR applications on mobile de-
vices. We can see that a naive compositing approach (mid-
dle) is unable to produce a consistent result, and the two
inserted chairs appear out of place. Using our approach,
we can estimate the lighting and material parameters of
the original scene, composite the scene in 3D, and then re-
render. We are able to produce consistent results for both
textured and non-textured scenes (right column).

In Fig. 2 of the main paper, we show a real-world ex-
ample on the Matterport3D [1] dataset, where we insert a
virtual teddy into the environment. To this end, we first
estimate lighting and surface materials in a 3D scan; we
then render the scene with and without the new virtual ob-
ject; finally, we apply the delta image to the original input
and composite the virtual object into the image. Compared
to the SVSH baseline, our approach achieves significantly
better compositing results.



Figure 5: Results of our approach on synthetic scenes with textured objects. Our optimization is able to recover the scene
lighting in addition to high-resolution surface texture material parameters.

Figure 6: Examples from Matterport3D [1] (real-world RGB-D scanning data) where we reconstruct emission parameters, as
well as high-resolution surface texture material parameters. We are able to reconstruct fine texture detail by subdividing the
geometry mesh and optimizing on individual triangle parameters. Since not all light sources are present in the reconstructed
geometry, some inaccuracies are introduced into our material reconstruction. Albedo in shadow regions can be overestimated
to compensate for missing illumination (visible behind the chair in Scene 1), specular effects can be baked into the albedo
(reflection of flowers on the TV) or color may be projected onto the incorrect geometry (part of the chair is missing, so its
color is projected onto the floor and wall).



E. Implementation Details

We implement our inverse path tracer in C++, and all of
our experiments run on an 8-core CPU. We use Embree [6]
for the ray casting operations. For efficient implementation,
instead of employing automatic differentiation libraries, the
light path gradients are computed using manually-derived
derivatives.

We use ADAM [3] as our optimizer of choice with an ini-
tial learning rate of 5 · 10−3. We further use an initial batch
size of 8 pixels which are uniformly sampled from the set
of all pixels of all images. We found marginal benefit of
having larger batches, but we believe there is high potential
in investigating better sampling strategies. In all our experi-
ments, the emission and albedo parameters are initialized to
zero.

For every pixel in the batch, we need to compute an es-
timate of the pixel color based on the current value of the
unknown material and emission parameters. This estimated
color is compared against the ground truth color and a gra-
dient is computed depending on the choice of the loss func-
tion. For most commonly used loss functions, this gradi-
ent will involve a multiplication of the estimated pixel color
and its derivative with respect to the unknown parameters.
Since these are random variables (approximated by Monte
Carlo integration), it is important that they are calculated
from independent samples to avoid bias. We use path trac-
ing with multiple importance sampling for the computation
of the pixel color, but any unbiased light transport method
will produce the correct result.

We extend our path tracer to analytically compute deriva-
tives w.r.t. emission and material parameters as defined by
Eq. 5 and 6 of the main paper. To this end, we pass a
reference to a structure holding the derivatives to our ray
casting function. The product of BSDFs in Eq. 5 is incre-
mentally calculated at each bounce. Given that Le(xi) is
the unknown emission parameter on surface i, the deriva-
tive w.r.t. this emission parameter is equal to the product
of the BSDFs at each surface intersection from surface i to
the sensor. The derivatives w.r.t. to the materials are com-
puted in similar manner. As per chain rule, we multiply
the throughput by the derivative of the BSDF w.r.t. the un-
known material parameters to obtain the derivative of the
pixel color w.r.t. the unknown material parameters.

We implement multiple importance sampling, a combi-
nation of light source sampling and BRDF importance sam-
pling. The importance for light source sampling is based
on the unknown emission parameters which may change in
every iteration of our optimization. An efficient data struc-
ture is needed to store the sampling probabilities for every
object. We implement a binary indexed tree (also known as
Fenwick tree) for this purpose. This provides logarithmic
complexity for both reading and updating the probabilities.

Finally, to make the optimization more robust, we pro-
pose a coarse-to-fine approach, where we first optimize for
one emission and one material parameter per object in-
stance. Most scenes have only a few emitters, so we em-
ploy an L1-regularizer on all the emission parameters. After
convergence, the result is refined by optimizing for material
parameters of individual object triangles. The light sources
stay fixed in this phase, but their emission value may still
change. In the end, the triangles may be subdivided as ex-
plained in Sec. B to further improve the results.

References
[1] Angel Chang, Angela Dai, Thomas Funkhouser, Maciej Hal-

ber, Matthias Niessner, Manolis Savva, Shuran Song, Andy
Zeng, and Yinda Zhang. Matterport3D: Learning from RGB-
D data in indoor environments. International Conference on
3D Vision (3DV), 2017. 2, 3

[2] A. Handa, T. Whelan, J.B. McDonald, and A.J. Davison. A
benchmark for RGB-D visual odometry, 3D reconstruction
and SLAM. In IEEE Intl. Conf. on Robotics and Automation,
ICRA, Hong Kong, China, May 2014. 2

[3] Diederick P Kingma and Jimmy Ba. Adam: A method
for stochastic optimization. In International Conference on
Learning Representations, 2015. 4

[4] Abhimitra Meka, Maxim Maximov, Michael Zollhoefer,
Avishek Chatterjee, Hans-Peter Seidel, Christian Richardt,
and Christian Theobalt. Lime: Live intrinsic material estima-
tion. In Proceedings of Computer Vision and Pattern Recog-
nition (CVPR), June 2018. 2

[5] Eric Veach. Robust Monte Carlo Methods for Light Trans-
port Simulation. PhD thesis, Stanford, CA, USA, 1998.
AAI9837162. 1

[6] Ingo Wald, Sven Woop, Carsten Benthin, Gregory S Johnson,
and Manfred Ernst. Embree: a kernel framework for efficient
CPU ray tracing. ACM Trans. Graph. (Proc. SIGGRAPH),
33(4):143, 2014. 4


