Supplemental to — Pushing the Envelope for RGB-based
Dense 3D Hand Pose Estimation via Neural Rendering

Seungryul Baek
Imperial College London

s.baekl5@imperial.ac.uk

This supplemental material provides a brief summary
of our training and testing processes (Sec. 1.1), details of
our skeleton regressor (Sec. 1.2), and data pre-processing
and normalization steps (Sec. 1.3); and presents additional
results and examples (Sec. 2). Some contents from the main
paper are reproduced so that this document is self-contained.

1. Details of our algorithm
1.1. Summary of the training and testing processes

Testing. Our dense hand pose estimator (DHPE) receives
an input RGB image x € & and generates the corresponding
2D segmentation mask m’ € M and 3D skeleton j € J
estimates. During the testing process, it also synthesizes the
3D mesh v/ € V corresponding x: The DHPE decomposes
into multiple component functions:

fHME:fEKDOfEZD

X fEZD fE}D V mej:(fRag’fRzn)

DHPE — {Proj o f HME
f fhreiof

where the hand mesh estimator (HME) f™E estimates a 3D
hand model (MANO)-based parameterization h’ of v':

h: [p,S,Cq,CS,Ct]T. (2)

Here p and s, respectively represent the shape and pose
(articulation) while the other three parameters represent a
camera (3D rotation ¢, € R%, scale ¢, € R, and translation
Ct € RS)

Once the initial mesh (parameter) h’ is estimated, our
algorithm refines it by enforcing its consistency over the
intermediate variables generated during testing: It minimizes

L = || [[fP"5(x)] 7] ¢y _j/JZDHE
FA||F(x) = PR) 0 X)|2 + Ly, 3)

where ® denotes element-wise multiplication and [j] xy ex-
tracts the =, y—coordinate values of skeleton joints from j.
The Laplacian regularizer L;,, enforces spatial smoothness

Kwang In Kim
UNIST

kimki@unist.ac.uk

Tae-Kyun Kim
Imperial College London

tk.kim@imperial.ac.uk

in the mesh v. This helps avoid generating implausible hand
meshes as suggested by Kanazawa et al. [4]. Our renderer
fRen synthesizes a 2D hand segmentation mask from a mesh
by simulating the camera view of x. Algorithm 2 summa-
rizes the testing process.

Training. For training, our system receives 1) a set of train-
ing data D = {(x;, (j;, m;))},_, which consists of input
RGB images x;, and the corresponding ground-truth 3D
skeletons j; and 2D segmentation masks m;, 2) the projec-
tion operator 7%, 3) the MANO model consisting of its
PCA shape basis and the mean pose vector. Our algorithm
optimizes the weights of the 3D mesh estimator fP and
2D feature extractor F' based on L (Eq. 8). In parallel, the
joint estimation network f/?P is optimized based on Lp
(Eq. 4). Algorithm 1 summarizes the training process. The
two training hyperparameters 7' (the number of epochs) and
N’ (the size of mini-batch) are determined at 100 and 40,
respectively.

Lpap(f72P) =|1f7P(x) = Japbearll’ 4)
Lpea(F) =||F(x) = F(x ©m)|3 ©)
Lgi = ||[fPPF (%) — my |, ©6)
Ly = || /% ([i2p (8), F(x), W' (), ff¢(v")])
. 2
— Javor ||, (7

L(fE3D7 F) :LArt<fE3Da F) + LLap(fE3D7 F) + LFeat(F)
+ ALsi(f7P, F) + Ly (7P, F), ®)

where [y] r extracts the m-component of y = (j, m).

1.2. Skeleton regressor f~es

The skeleton regressor f7¢ receives a (predicted) mesh
consisting of 778 vertices v € V C R7"8%3 and generates
21 skeletal joint positions j € J C R21%3. Our regressor
builds upon the original MANO regressor which is imple-
mented as three multi-dimensional linear regressors, each
aligned with a coordinate axis [5]: The x—axis regressor
receives the x—coordinate values of v and synthesizes the

Algorithm 1: Training process

Algorithm 2: Testing process

Input:

~Training data D = {(x;, (j;, m;))}_;:

x: RGB image;

(j, m): ground-truth

3D skeleton and 2D segmentation mask;
—Projection operator /7% = (fRes fRen),
—MANO model: PCA shape basis;
mean pose vector;
—Hyper-parameters: number 7' of epochs
size N/ of mini-batch;
Output: (Weights of)
-3D mesh estimator f£3P;
—2D evidence estimator f£?P = (F, f/2P);

Initialization:

—Randomize (parameters) of f£3P;
—Pre-train F' based on [2];
—Pre-train f/?P based on [7];

fort=1,....,Tdo

forn=1,...,N/N'do

For each data point x in the mini-batch D,,,

evaluate (feed-forward) fPH#PE on x:

Generate mesh parameter h’, 3D skeleton j’
and 2D segmentation mask m’;

Generate 2D evidences (F'(x), j5 (), mesh
parameter h’, 3D skeleton j* and 2D
segmentation mask m’;

if t > 20 then

Augment D with new synthetic data
instances generated from h’ (Eq. 2), by
changing its shape s’ and viewpoint ¢';

end

Calculate gradient V L with respect to (the
weights of) f£3P (Eq. 8) on D,,, and update
FED,

Calculate gradients V Lg,,, (Eq. 5) and VL
with respect to F' on D,,, and update F';

Calculate gradient V Lj,p (Eq. 4) with respect
to V2P on D,,, and update f/?";

end
end

x—axis coordinate values of 16 skeletal joints. The y—axis
and z—axis regressors are constructed similarly. In this way,
the original MANO regressor estimates only 16 joint posi-
tions. The remaining five, finger tip positions are estimated
by simply selecting a point of v that corresponds to a finger
tip, per axis.! These additional regressors are implemented
for each finger tip and for each axis, as a 778-dimensional

!'Unlike other skeletal joint locations which lie inside the mesh v, finger
tips lie on (the surface) v. Therefore, selecting a point on v can give a good
joint location estimate.

Input: Test image x;
Output:
—3D mesh v';
—2D segmentation mask m’;
—3D skeleton j';
Feed-forward fPHPE on x: Generate 2D evidence
j5p(t), and 3D mesh v’ and it’s parameter h';
fort=1,...,50do
| Update h'(¢) using Eq. 3.
end
Generate v’ from h'(¢) and m’;
Generate j’ from v’;

vector where all elements are zero except for the entry corre-
sponding to the vertex location of the corresponding finger
tip, where value 1 is assigned. As a whole, our regressor
fRes is represented as three matrices of size 778 x 21. As
a linear regressor, fR¢ is differentiable with respect to its
input and output arguments.

1.3. Data pre-processing and normalization

To facilitate the training of the skeleton regressor fX¢,
similarly to [3, 7], we explicitly normalize its output space J :
Our articulation loss Ly4,; measures the deviation between
the skeleton estimated from the training input x; and the
corresponding growth-truth jj;:

Lan = |2 (xi)l = 3ill3, ©)

where [y] 7 extracts the j-component of y = (j, m).

Here,] spatially normalizes j: First, a tight 2D hand
bounding box is extracted from the corresponding ground-
truth 2D skeleton of x;, and the center of the skeleton is
moved to its middle finger’s MCP position. Then, each axis
is normalized to a unit interval [0, 1]: The z, y—coordinate
values are divided by g (=1.5 times the maximum of height
and width of the bounding box). The z—axis value is divided
by (ZRoor X) /€ Where zg, is the depth value of the middle
finger’s MCP joint and c; is the focal length of the camera.

At testing, once normalized skeletons are generated, they
are inversely normalized to the original scale based on the
parameters g and zgyo;-

Estimation of the bounding box size g. First, we use Zim-
mermann and Brox’s hand detector [7] to infer bounding
boxes in each video frame. The corner coordinates of the
detected boxes are then temporally smoothed by taking an
average over the past five frames.

For RHD, following Cai et al.’s experimental settings [1],
the bounding boxes are extracted from the ground-truth 2D
skeletons provided in the dataset, to facilitate a fair compari-
son with their algorithm.

(@) (b (©) (d)
Figure 1: Data augmentation examples: (a) the original
mesh, (b) and (c) shape variations from (a), and (d) view-
point variation from (a). 3D meshes on top are textured and
rendered on random backgrounds (bottom).

Estimation of the hand depth zg,,,. We use the 3D root
depth estimation algorithm proposed by Igbal et al. [3] for
DO. For RHD and SHD, for pair comparison with [1], the
ground-truth depth values are used.

2. Additional results and examples

Figure 1 shows example outputs of our data augmenta-
tion method. Figure 2 shows additional dense hand pose
estimation results extending Fig. 7 of the main paper. When
compared with the results obtained by a variation of our
algorithm that does not use the shape loss (b—d: Lg;; Eq. 6),
our final algorithm (e—g) acheived much higher shape esti-
mation accuracy (c and f, especially in 1st, 2nd, 5th, and 7th
examples), which led to better alignment of hand contours (c
and f) and eventually to significantly lower pose estimation
error (b and e). These examples confirm the quantitative
results shown in Fig. 3 and demonstrate the benefits of shape
estimation even when the final goal is to estimate skeletal
poses.

References

[1] Y. Cai, L. Ge, J. Cai, and J. Yuan. Weakly-supervised 3d hand
pose estimation from monocular rgb images. In ECCV, 2018.
2,3

[2] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. In CVPR, 2016. 2

[3] U. Igbal, P. Molchanov, T. Breuel, J. Gall, and J. Kautz. Hand
pose estimation via latent 2.5D heatmap regression. In ECCV,
2018. 2,3

[4] A.Kanazawa, S. Tulsiani, A. A. Efros, and J. Malik. Learning
category-specific mesh reconstruction from image collections.
In ECCV, 2018. |

[5] J. Romero, D. Tzionas, and M. J. Black. Embodied hands:
Modeling and capturing hands and bodies together. In SIG-
GRAPH Asia, 2017. 1

[6] D.J. Tan, T. Cashman, J. Taylor, A. Fitzgibbon, D. Tarlow,
S. Khamis, S. Izadi, and J. Shotton. Fits like a glove: Rapid
and reliable hand shape personalization. In CVPR, 2016. 4

[7] C.Zimmermann and T. Brox. Learning to estimate 3D hand
pose from single RGB images. In ICCV, 2017. 2

(a) (b) 13.81 mm (c) (d) (e) 12.99 mm) (2)

Figure 2: Dense hand pose estimation examples. (a) input images, (b-d) and (e-g) results obtained without and with shape
loss, respectively. (b,e) estimated hand meshes overlaid on the input image and the corresponding estimated skeletons (Blue)
overlaid with their ground-truths (Red), (c,f) estimated shapes rendered in canonical articulation and viewpoints, and (d,g)
Color-coded 2D segmentation masks: (and Blue: estimated masks; and Red: ground-truth masks; Red and Blue
highlight errors). Our visualization method in (d) and (g) is inspired by [6].

0.8
v/ 0.6
QO
-9
P04 f
02 |
Ours (AUC=0.826)
Ours (Trained w/o Eq. 9) (AUC=0.810)
0 s s s | Ours (w/o0 Test. ref.) (AUC=0.816)
0 20 40 60 80 Ours (w/o Test. ref. and Data Aug.), (AUC=0.778)
Error Thresholds (mm) Ours (w/o Test. ref. and 2D losses (Lpeat, Lyop)) (AUC=0.714)
1 -
0.8 r
0.6 -
M
Q
-9
a
04 ¢
—4@— Ours, (AUC=0.654)
Ours (Test. ref. iteration# -20), (AUC=0.634)
02 r Ours (Test. ref. iteration# -40), (AUC=0.602)
— ® — Ours (w/o Test. ref., (AUC=0.564))
— ® — Ours (w/o Test. ref. but w/ less Data Aug. 1x), (AUC=0.554)
0 ‘ ‘ — ® — Ours (w/o Test. ref. and Data Aug.), (AUC=0.536)
0 20 40 60 80 100 —m— Ours (w/o Test. ref. and Refiner f5¢/), (AUC=0.511)
Error Thresholds (mm) —&— Ours (w/o Test. ref. and 2D losses (Lreat, L2p)), (AUC=0.342)
I -
0.8 r
0.6
2
O
-9
a
04 ¢
02
Ours, (AUC=0.882)
Ours (w/o Test. ref.), (AUC=0.871)
0 ! ! ! i Ours (w/o Test. ref. and Refiner f7¢/), (AUC=0.869)
0 20 40 60 80 Ours (w/o Test. ref. and Data Aug.), (AUC=0.862)
Error Thresholds (mm) Ours (w/o Test. ref., f#¢/ and 2D losses (Lpear, Lyap)), (AUC=0.834)

Figure 3: Performance of our algorithm with different design choices. Top to bottom: results on RHD, DO, and SHD,
respectively.

