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1. Alternative Forms
The registration and clustering experiments in the paper

require that we formulate our loss as an outlier process. Us-
ing the equivalence between robust loss minimization and
outlier processes established by Black and Rangarajan [1],
we can derive our loss’s Ψ-function:
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Ψ(z, α) is not defined when α ≥ 2 because for those values
the loss is no longer robust, and so is not well described as
a process that rejects outliers.

We can also derive our loss’s weight function to be used
during iteratively reweighted least squares [2, 5]:
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Curiously, these IRLS weights resemble a non-normalized
form of Student’s t-distribution. These weights are not used
in any of our experiments, but they are an intuitive way to
demonstrate how reducing α attenuates the effect of out-
liers. A visualization of our loss’s Ψ-functions and weight
functions for different values of α can be seen in Figure 1.

2. Practical Implementation
The special cases in the definition of ρ (·) that are

required because of the removable singularities of f (·)
at α = 0 and α = 2 can make implementing our
loss somewhat inconvenient. Additionally, f (·) is nu-
merically unstable near these singularities, due to divi-
sions by small values. Furthermore, many deep learning

Figure 1: Our general loss’s IRLS weight function (left) and
Ψ-function (right) for different values of the shape parame-
ter α.

frameworks handle special cases inefficiently by evaluat-
ing all cases of a conditional statement, even though only
one case is needed. To circumvent these issues we can
slightly modify our loss (and its gradient and Ψ-function) to
guard against singularities and make implementation easier:
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Where ε is some small value, such as 10−5. Note that even
very small values of ε can cause significant inaccuracy be-
tween our true partition function Z (α) and the effective
partition function of our approximate distribution when α
is near 0, so this approximate implementation should be
avoided when accurate values of Z (α) are necessary.

Implementing the negative log-likelihood of our general
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distribution (ie, our adaptive loss) requires a tractable and
differentiable approximation of its log partition function.
Because the analytical form of Z (α) detailed in the pa-
per is difficult to evaluate efficiently for any real number,
and especially difficult to differentiate with respect to α,
we approximate log(Z (α)) using cubic hermite spline in-
terpolation in a transformed space. Efficiently approximat-
ing log(Z (α)) with a spline is difficult, as we would like a
concise approximation that holds over the entire valid range
α ≥ 0, and we would like to allocate more precision in our
spline interpolation to values near α = 2 (which is where
log(Z (α)) varies most rapidly). To accomplish this, we
first apply a monotonic nonlinearity to α that stretches val-
ues near α = 2 (thereby increasing the density of spline
knots in this region) and compresses values as α � 4, for
which we use:

curve(α) =

{
9(α−2)

4|α−2|+1 + α+ 2 if α < 4
5
18 log (4α− 15) + 8 otherwise

(3)

This curve is roughly piecewise-linear in [0, 4] with a slope
of ∼1 at α = 0 and α = 4, but with a slope of ∼10 at
α = 2. When α > 4 the curve becomes logarithmic. This
function is continuously differentiable, as is required for our
log-partition approximation to also be continuously differ-
entiable.

We transform α with this nonlinearity, and then approx-
imate log(Z (α)) in that transformed space using a spline
with knots in the range of [0, 12] evenly spaced apart by
1/1024. Values for each knot are set to their true value, and
tangents for each knot are set to minimize the squared er-
ror between the spline and the true log partition function.
Because our spline knots are evenly spaced in this trans-
formed space, spline interpolation can be performed in con-
stant time with respect to the number of spline knots. For all
values of α this approximation is accurate to within 10−6,
which appears to be sufficient for our purposes. Our non-
linearity and our spline approximation to the true partition
function for small values of α can be seen in Figure 2.

3. Motivation and Derivation
Our loss function is derived from the “generalized Char-

bonnier” loss [8], which itself builds upon the Charbon-
nier loss function [3]. To better motivate the construction
of our loss function, and to clarify its relationship to prior
work, here we work through how our loss function was con-
structed.

Generalized Charbonnier loss can be defined as:

d (x, α, c) =
(
x2 + c2

)α/2
(4)

Here we use a slightly different parametrization from [8]
and use α/2 as the exponent instead of just α. This makes the
generalized Charbonnier somewhat easier to reason about

Figure 2: Because our distribution’s log partition function
log(Z (α)) is difficult to evaluate for arbitrary inputs, we
approximate it using cubic hermite spline interpolation in
a transformed space: first we curve α by a continuously
differentiable nonlinearity that increases knot density near
α = 2 and decreases knot density when α > 4 (top) and
then we fit an evenly-sampled cubic hermite spline in that
curved space (bottom). The dots shown in the bottom plot
are a subset of the knots used by our cubic spline, and are
presented here to demonstrate how this approach allocates
spline knots with respect to α.

with respect to standard loss functions: d (x, 2, c) resembles
L2 loss, d (x, 1, c) resembles L1 loss, etc.

We can reparametrize generalized Charbonnier loss as:

d (x, α, c) = cα
(

(x/c)
2

+ 1
)α/2

(5)

We omit the cα scale factor, which gives us a loss that is
scale invariant with respect to c:

g (x, α, c) =
(
(x/c)2 + 1

)α/2
(6)

∀k>0 g(kx, α, kc) = g(x, α, c) (7)

This lets us view the c “padding” variable as a “scale” pa-
rameter, similar to other common robust loss functions. Ad-
ditionally, only after dropping this scale factor does setting
α to a negative value yield a family of meaningful robust
loss functions, such as Geman-McClure loss.

But this loss function still has several unintuitive proper-
ties: the loss is non-zero when x = 0 (assuming a non-zero
value of c), and the curvature of the quadratic “bowl” near



x = 0 varies as a function of c and α. We therefore con-
struct a shifted and scaled version of Equation 6 that does
not have these properties:

g (x, α, c)− g (0, α, c)

c2g′′ (0, α, c)
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This loss generalizes L2, Cauchy, and Geman-McClure
loss, but it has the unfortunate side-effect of flattening out to
0 when α � 0, thereby prohibiting many annealing strate-
gies. This can be addressed by modifying the 1/α scaling to
approach 1 instead of 0 when α� 0 by introducing another
scaling that cancels out the division by α. To preserve the
scale-invariance of Equation 7, this scaling also needs to be
applied to the (x/c)

2 term in the loss. This scaling also needs
to maintain the monotonicity of our loss with respect to α
so as to make annealing possible. There are several scalings
that satisfy this property, so we select one that is efficient
to evaluation and which keeps our loss function smooth (ie,
having derivatives of all orders everywhere) with respect to
x, α, and c, which is |α − 2|. This gives us our final loss
function:
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|α− 2|
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Using |α − 2| satisfies all of our criteria, though it does
introduce a removable singularity into our loss function at
α = 2 and reduces numerical stability near α = 2.

4. Additional Properties
Here we enumerate additional properties of our loss

function that were not used in our experiments.
At the origin the IRLS weight of our loss is 1

c2 :
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∂x
(0, α, c) =

1
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(10)

For all values of α, when |x| is small with respect to c the
loss is well-approximated by a quadratic bowl:

ρ (x, α, c) ≈ 1

2
(x/c)

2 if |x| < c (11)

Because the second derivative of the loss is maximized at
x = 0, this quadratic approximation tells us that the second
derivative is bounded from above:

∂2ρ

∂x2
(x, α, c) ≤ 1

c2
(12)

When α is negative the loss approaches a constant as |x|
approaches infinity, letting us bound the loss:

∀x,c ρ (x, α, c) ≤ α− 2

α
if α < 0 (13)

The loss’s Ψ-function increases monotonically with respect
to α when α < 2 for all values of z in [0, 1]:

∂Ψ

∂α
(z, α) ≥ 0 if 0 ≤ z ≤ 1 (14)

The roots of the second derivative of ρ (x, α, c) are:

x = ±c
√
α− 2

α− 1
(15)

This tells us at what value of x the loss begins to redescend.
This point has a magnitude of c when α = −∞, and that
magnitude increases as α increases. The root is undefined
when α ≥ 1, as our loss is redescending iff α < 1. Our
loss is strictly convex iff α ≥ 1, non-convex iff α < 1, and
pseudoconvex for all values of α.

5. Wavelet Implementation
Two of our experiments impose our loss on im-

ages reparametrized with the Cohen-Daubechies-Feauveau
(CDF) 9/7 wavelet decomposition [4]. The analysis filters
used for these experiments are:

lowpass highpass
0.852698679009 0.788485616406
0.377402855613 -0.418092273222
-0.110624404418 -0.040689417609
-0.023849465020 0.064538882629
0.037828455507

Here the origin coefficient of the filter is listed first, and the
rest of the filter is symmetric. The synthesis filters are de-
fined as usual, by reversing the sign of alternating wavelet
coefficients in the analysis filters. The lowpass filter sums
to
√

2, which means that image intensities are doubled at
each scale of the wavelet decomposition, and that the mag-
nitude of an image is preserved in its wavelet decomposi-
tion. Boundary conditions are “reflecting”, or half-sample
symmetric.

6. Variational Autoencoders
Our VAE experiments were performed using the

code included in the TensorFlow Probability codebase
at http://github.com/tensorflow/probability/blob/

master/tensorflow_probability/examples/vae.py.
This code was designed for binarized MNIST data, so
adapting it to the real-valued color images in CelebA [6]
required the following changes:

• Changing the input and output image resolution from
(28, 28, 1) to (64, 64, 3).

• Increasing the number of training steps from 5000 to
50000, as CelebA is significantly larger than MNIST.

http://github.com/tensorflow/probability/blob/master/tensorflow_probability/examples/vae.py
http://github.com/tensorflow/probability/blob/master/tensorflow_probability/examples/vae.py


• Delaying the start of cosine decay of the learning rate
until the final 10000 training iterations.

• Changing the CNN architecture from a 5-layer network
with 5-tap and 7-tap filters with interleaved strides of 1
and 2 (which maps from a 28 × 28 image to a vector)
to a 6-layer network consisting of all 5-tap filters with
strides of 2 (which maps from a 64×64 input to a vector).
The number of hidden units was left unchanged, and the
one extra layer we added at the end of our decoder (and
beginning of our decoder) was given the same number of
hidden units as the layer before it.

• In our “DCT + YUV” and “Wavelets + YUV” models,
before imposing our model’s posterior we apply an RGB-
to-YUV transformation and then a per-channel DCT or
wavelet transformation to the YUV images, and then in-
vert these transformations to visualize each sampled im-
age. In the “Pixels + RGB” model this transformation
and its inverse are the identity function.

• As discussed in the paper, for each output coefficient
(pixel value, DCT coefficient, or wavelet coefficient) we
add a scale variable (σ when using normal distributions,
c when using our general distributions) and a shape vari-
able α (when using our general distribution).

We made as few changes to the reference code as possible
so as to keep our model architecture as simple as possible,
as our goal is not to produce state-of-the-art image synthesis
results for some task, but is instead to simply demonstrate
the value of our general distribution in isolation.

CelebA [6] images are processed by extracting a square
160 × 160 image region at the center of each 178 × 218
image and downsampling it to 64 × 64 by a factor of 2.5×
using TensorFlow’s bilinear interpolation implementation.
Pixel intensities are scaled to [0, 1].

In the main paper we demonstrated that using our gen-
eral distribution to independently model the robustness of
each coefficient of our image representation works better
than assuming a Cauchy (α = 0) or normal distribution
(α = 2) for all coefficients (as those two distributions lie
within our general distribution). To further demonstrate the
value of independently modeling the robustness of each in-
dividual coefficient, we ran a more thorough experiment in
which we densely sampled values for α in [0, 2] that are
used for all coefficients. In Figure 3 we visualize the val-
idation set ELBO for each fixed value of α compared to
an independently-adapted model. As we can see, though
quality can be improved by selecting a value for α in be-
tween 0 and 2, no single global setting of the shape parame-
ter matches the performance achieved by allowing each co-
efficient’s shape parameter to automatically adapt itself to
the training data. This observation is consistent with ear-

Figure 3: Here we compare the validation set ELBO of our
adaptive “Wavelets + YUV” VAE model with the ELBO
achieved when setting all wavelet coefficients to have the
same fixed shape parameter α. We see that allowing our
distribution to individually adapt its shape parameter to each
coefficient outperforms any single fixed shape parameter.

lier results on adaptive heavy-tailed distributions for image
data [7].

In our Student’s t-distribution experiments, we
parametrize each “degrees of freedom” parameter as
the exponentiation of some latent free parameter:

ν(i) = exp
(
ν
(i)
`

)
(16)

where all ν(i)` are initialized to 0. Technically, these ex-
periments are performed with the “Generalized Student’s
t-distribution”, meaning that we have an additional scale
parameter σ(i) that is divided into x before computing the
log-likelihood and is accounted for in the partition function.
These scale parameters are parametrized identically to the
c(i) parameters used by our general distribution.

Comparing likelihoods across our different image repre-
sentations requires that the “Wavelets + YUV” and “DCT +
YUV” representations be normalized to match the “Pixels
+ RGB” representation. We therefore construct the linear
transformations used for the “Wavelets + YUV” and “DCT
+ YUV” spaces to have determinants of 1 as per the change
of variable formula (that is, both transformations are in the
“special linear group”). Our wavelet construction in Sec-
tion 5 satisfies this criteria, and we use the orthonormal ver-
sion of the DCT which also satisfies this criteria. However,
the standard RGB to YUV conversion matrix does not have
a determinant of 1, so we scale it by the inverse of the cube
root of the standard conversion matrix, thereby forcing its
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Figure 4: The final shape and scale parameters {α(i)} and
{c(i)} for our “Pixels + RGB” VAE after training has con-
verged. We visualize α with black=0 and white=2 and
log(c) with black=log(0.002) and white=log(0.02).

{α
(i
)
}

{l
og
( c(i))

}

Y U V

Figure 5: The final shape and scale parameters {α(i)} and
{c(i)} for our “Wavelets + YUV” VAE after training has
converged. We visualize α with black=0 and white=2 and
log(c) with black=log(0.00002) and white=log(0.2).

determinant to be 1. The resulting matrix is: 0.47249 0.92759 0.18015
−0.23252 −0.45648 0.68900

0.97180 −0.81376 −0.15804


Naturally, its inverse maps from YUV to RGB.

Because our model can adapt the shape and scale pa-
rameters of our general distribution to each output coeffi-
cient, after training we can inspect the shapes and scales
that have emerged during training, and from them gain in-
sight into how optimization has modeled our training data.
In Figures 4 and 5 we visualize the shape and scale pa-
rameters for our “Pixels + RGB” and “Wavelets + YUV”
VAEs respectively. Our “Pixels” model is easy to visual-
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Figure 6: As is common practice, the VAE samples shown
in this paper are samples from the latent space (left) but
not from the final conditional distribution (right). Here we
contrast decoded means and samples from VAEs using our
different output spaces, all using our general distribution.

ize as each output coefficient simply corresponds to a pixel
in a channel, and our “Wavelets” model can be visualized
by flattening each wavelet scale and orientation into an im-
age (our DCT-based model is difficult to visualize in any
intuitive way). In both models we observe that training has
determined that these face images should be modeled us-
ing normal-like distributions near the eyes and mouth, pre-
sumably because these structures are consistent and repeat-
able on human faces, and Cauchy-like distributions on the
background and in flat regions of skin. Though our “Pix-
els + RGB” model has estimated similar distributions for
each color channel, our “Wavelets + YUV” model has esti-
mated very different behavior for luma and chroma: more
Cauchy-like behavior is expected in luma variation, espe-
cially at fine frequencies, while chroma variation is modeled
as being closer to a normal distribution across all scales.

See Figure 8 for additional samples from our models,



and see Figure 9 for reconstructions from our models on
validation-set images. As is common practice, the sam-
ples and reconstructions in those figures and in the paper
are the means of the output distributions of the decoder, not
samples from those distributions. That is, we draw samples
from the latent encoded space and then decode them, but we
do not draw samples in our output space. Samples drawn
from these output distributions tend to look noisy and irreg-
ular across all distributions and image representations, but
they provide a good intuition of how our general distribu-
tion behaves in each image representation, so in Figure 6 we
present side-by-side visualizations of decoded means and
samples.

7. Unsupervised Monocular Depth Estimation
Our unsupervised monocular depth estimation experi-

ments use the code from https://github.com/tinghuiz/

SfMLearner, which appears to correspond to the “Ours (w/o
explainability)” model from Table 1 of [10]. The only
changes we made to this code were: replacing its loss func-
tion with our own, reducing the number of training iter-
ations from 200000 to 100000 (training converges faster
when using our loss function) and disabling the smooth-
ness term and multi-scale side predictions used by [10], as
neither yielded much benefit when combined with our new
loss function and they complicated experimentation by in-
troducing hyperparameters. Because the reconstruction loss
in [10] is the sum of the means of the losses imposed at each
scale in a D-level pyramid of side predictions, we use a D
level normalized wavelet decomposition (wherein images in
[0, 1] result in wavelet coefficients in [0, 1]) and then scale
each coefficient’s loss by 2d, where d is the coefficient’s
level.

In Figure 7 we visualize the final shape parameters for
each output coefficient that were converged upon during
training. These results provide some insight into why our
adaptive model produces improved results compared to the
ablations of our model in which we use a single fixed or
annealed value for α for all output coefficients. From the
low α values in the luma channel we can infer that training
has decided that luma variation often has outliers, and from
the high α values in the chroma channel we can infer that
chroma variation rarely has outliers. Horizontal luma varia-
tion (upper right) tends to have larger α values than vertical
luma variation (lower left), perhaps because depth in this
dataset is largely due to horizontal motion, and so horizon-
tal gradients tend to provide more depth information than
vertical gradients. Looking at the sides and the bottom of
all scales and channels we see that the model expects more
outliers in these regions, which is likely due to boundary
effects: these areas often contain consistent errors due to
there not being a matching pixel in the alternate view.

In Figures 10 and 11 we present many more results from

Y
U

V

Figure 7: The final shape parameters α for our unsuper-
vised monocular depth estimation model trained on KITTI
data. The parameters are visualized in the same “YUV +
Wavelet” output space as was used during training, where
black is α = 0 and white is α = 2.

the test split of the KITTI dataset, in which we compare
our “adaptive” model’s output to the baseline model and the
ground-truth depth. The improvement we see is substantial
and consistent across a variety of scenes.

8. Fast Global Registration
Our registration results were produced using the code re-

lease corresponding to [9]. Because the numbers presented
in [9] have low precision, we reproduced the performance
of the baseline FGR algorithm using this code. This code
included some evaluation details that were omitted from the
paper that we determined through correspondence with the
author: for each input, FGR is run 20 times with random
initialization and the median error is reported. We use this
procedure when reproducing the baseline performance of
[9] and when evaluating our own models.
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Figure 8: Random samples (more precisely, means of the output distributions decoded from random samples in our latent
space) from our family of trained variational autoencoders.



Pixels + RGB DCT + YUV Wavelets + YUV
Input Normal Cauchy t-dist Ours Normal Cauchy t-dist Ours Normal Cauchy t-dist Ours

Figure 9: Reconstructions from our family of trained variational autoencoders, in which we use one of three different image
representations for modeling images (super-columns) and use either normal, Cauchy, Student’s t, or our general distributions
for modeling the coefficients of each representation (sub-columns). The leftmost column shows the images which are used as
input to each autoencoder. Reconstructions from models using general distributions tend to be sharper and more detailed than
reconstructions from the corresponding model that uses normal distributions, particularly for the DCT or wavelet representa-
tions, though this difference is less pronounced than what is seen when comparing samples from these models. The DCT and
wavelet models trained with Cauchy distributions or Student’s t-distributions systematically fail to preserve the background
of the input image, as was noted when observing samples from these distributions.
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Figure 10: Monocular depth estimation results on the KITTI benchmark using the “Baseline” network of [10] and our own
variant in which we replace the network’s loss function with our own adaptive loss over wavelet coefficients. Changing only
the loss function results in significantly improved depth estimates.
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Figure 11: Additional monocular depth estimation results, in the same format as Figure 10.


