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Supplementary Material

A. Scale selection methods: architecture details

In Section 4.4 we report the performance of several
ablations of our method. Here we detail the architec-
ture of the following ablations:

• ss - A single scale version which directly feeds a
3DmFV representation into a CNN architecture
(a single-scale MuPS); see Table 3.

• ms - A multi-scale version which feeds the full
MuPS representation into a CNN architecture; see
Table 3.

• ms-sw - A multi scale version which first attempts
to estimate the noise level and then feeds the
3DmFV representation of the corresponding in-
put scale into two sub-networks for two noise lev-
els (switching). Note that for this version, the
noise level is provided during training and we use
a predetermined threshold for the sub-network se-
lection; see Table 4.

B. Normal estimation performance analysis

We show here additional results from section 4.3.
Figure 8 shows normal vectors mapped to RGB color at
each point. Figure 10 shows the angular error mapped
to a heatmap between 0-60. The number above each
point cloud is its RMS error. Figure 9 shows the expert
(scale) prediction by assigning a color to each expert
and visualizing the chosen expert color over the point
cloud.

ss ms

3D Inception(3,5,128) 3D Inception(3,5,128)
3D Inception(3,5,256) 3D Inception(3,5,256)
3D Inception(3,5,256) 3D Inception(3,5,256)

maxpool(2,2,2) maxpool(2,2,2)
3D Inception(3,5,512) 3D Inception(3,4,512)
3D Inception(3,5,512) 3D Inception(3,4,512)

maxpool(2,2,2) maxpool(2,2,2)
FC(1024) FC(1024)
FC(256) FC(256)
FC(128) FC(128)
FC(3) FC(3)

Table 3. Ablation architecture details for single-scale (ss)
and multi-scale (ms).

In Section 4.5 we report the normal estimation of
Nesti-Net and compare it qualitatively to the PCA re-
sults with medium scale. For additional comparison,
11 shows results of PCA for small and large scale. It
shows that a small scale produces a noisy output and
a large scale over-smooths fine details and corners.

In Section 4.3 we report the RMS error metric re-
sults for comparison to other methods. The RMS error
favors averaging methods. For example, near corners,
it will reward a method that estimates an average nor-
mal direction rather than a method that estimates the
normal of the wrong plane. Therefore, a complimen-
tary metric is required to negate this effect. We use the
proportion of good points metric (PGPα), which com-
putes the percentage of points with an error less than
α; e.g ., PGP10 computes the percentage of points with
angular error of less than 10 degrees. Table 5 reports
the results of PGP10 and Table 6 the results of PGP5
for the baseline methods compared to Nesti-Net.

We further investigate the performance of all meth-
ods near sharp features. by subdividing the testset
points into two subgroups according to their ground
truth curvatures: (a)sharp features, (b)smooth sur-
faces. Table 7 shows that Nesti-Net outperforms state-
of-the-art on both subgroups with significant PGP5 im-
provement of 19.6% vs prior best method for sharp fea-
tures. We compared to the best performance of each
method’s variants as well as a multi-scale approach for
both Jet and PCA (choosing the best radius).

We further demonstrate the normal smoothing im-
provement by depicting a Poisson reconstruction in
Figure 12.

ms-sw

noise estimation net normal estimation net

3D Inception(3,5,128) 3D Inception(3,5,128)
3D Inception(3,5,256) 3D Inception(3,5,256)
3D Inception(3,5,256) 3D Inception(3,5,256)

maxpool(2,2,2) maxpool(2,2,2)
3D Inception(3,5,512) 3D Inception(3,4,512)
3D Inception(3,5,512) 3D Inception(3,4,512)

maxpool(2,2,2) maxpool(2,2,2)
FC(1024) FC(1024)
FC(256) FC(256)
FC(128) FC(128)
FC(1) FC(3)

Table 4. Ablation architecture details for multi-scale with
switching. First the noise is estimated and then the input
is fed into the corresponding scale network according to
a threshold. The network for both scales is constructed
identically.



Aug. PCPNet [11] Jet [7] PCA [12] NestiNet

Scale ss ms small med large small med large MoE

None 0.8364 0.8404 0.8802 0.7509 0.6584 0.8686 0.7409 0.6606 0.9120

Noise
σ = 0.00125 0.8013 0.8031 0.7346 0.7447 0.6575 0.7712 0.7378 0.6598 0.8384
σ = 0.006 0.6667 0.6294 0.1006 0.6397 0.6311 0.1101 0.6402 0.6301 0.7164
σ = 0.01 0.5546 0.5124 0.0377 0.3827 0.547 0.04063 0.394 0.5462 0.6123

Density
Gradient 0.7801 0.8062 0.8848 0.7695 0.6401 0.8731 0.7624 0.6366 0.9003
Striped 0.7967 0.8076 0.8743 0.7504 0.6001 0.8609 0.7379 0.5879 0.8929

Average 0.7393 0.7332 0.5854 0.6730 0.6224 0.5874 0.6689 0.6202 0.8120

Table 5. Normal estimation results comparison using the PGP10 metric (higher is better).

Aug. PCPNet [11] Jet [7] PCA [12] NestiNet

Scale ss ms small med large small med large MoE

None 0.7078 0.6986 0.7905 0.6284 0.5395 0.7756 0.6192 0.5361 0.8057

Noise
σ = 0.00125 0.6245 0.5932 0.4132 0.6237 0.5377 0.4758 0.6157 0.5335 0.6611
σ = 0.006 0.4486 0.366 0.027 0.4152 0.4837 0.02998 0.42 0.4812 0.5618
σ = 0.01 0.3156 0.2482 0.0099 0.1462 0.3715 0.0104 0.154 0.3719 0.399

Density
Gradient 0.6065 0.6254 0.7883 0.6442 0.4976 0.7743 0.647 0.4894 0.7749
Striped 0.6126 0.6231 0.7753 0.6321 0.4598 0.7575 0.6174 0.4415 0.7676

Average 0.5526 0.5257 0.4674 0.5150 0.4816 0.4706 0.5122 0.4756 0.6617

Table 6. Normal estimation results comparison using the PGP5 metric (higher is better).

Ourspcpnet jet jet mspcapca msHough
Improve

(%)

P
G

P
5 (a) 0.39 0.24 0.29 0.31 0.28 0.30 0.33 19.6

(b) 0.77 0.65 0.63 0.74 0.62 0.73 0.60 3.05
Table 7. Nesti-Net normal estimation PGP5 performance
for subsets containing (a) sharp features and (b) smooth
surfaces. Percentage of relative improvement is given in
the right column.

C. Time complexity and timing

We subdivide Nesti-Net’s time complexity into its
two main stages: MuPS computation and normal es-
timation. It was shown in [4] that the time complex-
ity of 3DmFV is O(KT ). Here K is the number of
Gaussians and T is the number of points in the point
cloud. MuPS computes 3DmFV of n scales (point sub-
sets) containing a maximum of Tmax points. There-
fore, its time complexity is O(nKTmax). The time
complexity of the normal estimation network is con-
stant and proportional to the number of operators in
the network. Adding experts to the network increases
training time but does not affect test time since only
one expert is evaluated during test time. Adding ad-
ditional scales, however, affects the scale manager net-
work by introducing additional operators. Neverthe-
less, the normal estimation time is independent of the
number of points. We report the time performance of

our method and its ablations in Figure 13. It includes
timing results for single-scale (ss), multi-scale (ms) and
mixture-of-experts (Nesti-Net) using 83 Gaussians and
33 Gaussians in the ’light’ versions. Timing is mea-
sured as a function of the number of points within each
scale. Figure 13 shows that choosing a lower number
of Gaussians for the MuPS representation significantly
improves speed but introduces a tradeoff with accuracy.
For example, the average RMS error of ’Nesti-Net light’
is 13.5, which is still superior to all other methods but
by a smaller margin. We also report the timing re-
sults of different methods in Figure 14 and compare to
our ’light’ version. Note that the methods were im-
plemented using different frameworks; PCA and Jet
were implemented as part of the CGAL library, PCP-
Net uses pytorch, HoughCNN uses Cuda code directly,
and Nesti-Net was implemented using TensorFlow. All
measurements were performed on the same machine
with a quad-core Intel i7-4770 CPU, 16GB RAM, and
an Nvidia GTX 1080 GPU. The figure shows that PCA
and Jet are the fastest methods (PCA is slightly faster)
and that the learning-based approaches are compara-
ble. All of the results are outside the range of real-time
performance. The figure also shows that our method’s
timing is not as sensitive to the number of points within
each scale as the other methods.



Figure 8. Nesti-Net normal prediction results for different
noise levels (columns 1-4) and density distortions (columns
5-6). The point colors are normal vectors mapped to RGB.
Point clouds in rows marked with * were rotated for a better
view angle.

Figure 9. Nesti-Net predicted experts (scales). Each color
represents the predicted expert for optimal normal estima-
tion. Color coding is given at the bottom. Point clouds in
rows marked with * were rotated for a better view angle.



Figure 10. Normal estimation error results for Nesti-
Net compared to other methods for different noise levels
(columns 1-4) and density distortions (columns 5-6). The
point colors correspond to angular difference, mapped to a
heatmap between 0-60; see bottom color bar. The number
above each point cloud is its RMS error.



Figure 11. Normal estimation results on scanned data from the NYU Depth V2 [19] dataset and the ScanNet [8] dataset.

Figure 12. Poisson Reconstruction using normals estimated by Nesti-Net and oriented by MST [12] on PCPNet dataset
point clouds.
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Figure 13. Timing results for our method and its ablations
using 83 Gaussians and 33 Gaussians in the ’light’ ver-
sion. Ablations include single-scale (ss), multi-scale (ms)
and mixture-of-experts (Nesti-Net). Time is measured in
ms per point

0

0.5

1

1.5

2

2.5

0 50 100 150 200 250 300 350 400 450

Ti
m

e 
pe

r p
oi

nt
 [m

s]

Number of points

PCA Jet
PCPnet ss PCPNet ms
HoughCNN ms1 HoughCNN ms3
 HoughCNN ms5 Ours Nesti-NET light
Ours ms light

Figure 14. Timing results for normal estimating methods
measured in ms per point.




