
Supplementary material for StereoDRNet

1. Introduction
In this supplementary material, we provide additional

details of the training and evaluation procedure of our in-
door scene reconstruction experiments. We also provide in
depth detail of our proposed network architecture and show
the effect of the proposed refinement procedure on the re-
construction quality. We share the results of the ablation
study on the dilated convolutions used in our cost filtering
approach and visualize the comparison of the disparity pre-
dictions from our system with state of art methods on KITTI
and ETH3D benchmarks.

Figure 1: This figure shows the training scene used for
all our indoor scene reconstruction experiments. We used
about 200 stereo views rendered by OpenGL from poses
along the camera trajectory visualized by the blue curve.
The 3D reconstruction was built using the method described
in [10].

2. 3D Reconstruction Experiments
For all 3D reconstruction experiments and evaluations

we used a set of about 200 stereo views shown in Fig. 1 to
fine tune the SceneFlow [5]-pre-trained networks.

We show the textured 3D reconstructions of our indoor
scene dataset in Fig. 2. Note that we used KinectFusion [6]
to fuse the depth maps into 3D spatial maps. We did not
use any structure-from-motion (SfM) or external localiza-

tion method for estimating camera trajectories. Hence, the
camera views visualized in Fig. 2 are the output of the ICP
(iterative closest point) procedure used by the KinectFu-
sion [6] system. We used manual adjustment followed by
ICP to align the 3D reconstructions wherever necessary for
our evaluations.

3. Network Details
We provide the network architecture of StereoDRNet in

Table. 3. We borrowed ideas on extracting robust local im-
age features from PSMNet [1]. As described in the paper,
we use Vortex Pooling [11] for extracting global scene con-
text. In our experiments we found dilation rates 3, 5 and 15
and average grids of size 3×3, 5×5 and 15×15 to improve
performance more in disparity predictions than the one pro-
posed in the original work for semantic segmentation.

3D Dilation in Cost Filtering SceneFlow
rate = 1 rate = 2 rate = 4 rate = 8 EPE

X 1.13
X X 1.03
X X X 0.98
X X X X 1.01

Table 1: Ablation study of dilated convolution rates used
in the proposed dilated cost filtering scheme. Note that we
used StereoDRNet without refinement in this study.

In order to show the effectiveness of the proposed di-
lated convolutions in cost filtering, we conduct an ablation
study in Table. 1 on the SceneFlow [5] dataset. We observed
that increasing dilation rates improved the quality of predic-
tions. Dilation rates above 4 did not provide any significant
gains.

The proposed refinement network described in Ta-
ble. 2 is inspired by the refinement procedures proposed
in CRL [7], iResNet [4], StereoNet [3], and ActiveStere-
oNet [13]. We adopted the basic architecture for refine-
ment as described in StereoNet [3] with dilated residual
blocks [12] to increase the receptive field of filtering with-
out compromising resolution. This technique was also
adopted in recent work on optical flow prediction Pwc-
net [9]. We experienced additional gains when using the
photometric error Ep and geometric error maps Eg as in-
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Index Layer Description Output
1 Warp(IR,d3

L) - IL H x W x 3
2 concat 1, IL H x W x 6
3 Warp(d3

R, d3
L) - d3

L H x W x 1
4 concat 3, d3

L H x W x 2
5 3x3 conv on 2, 16 features H x W x 16
6 3x3 conv on 4, 16 features H x W x 16
7 concat 5,6 IL H x W x 32

8-13
(3x3 conv, residual block) x 6,

H x W x 32
dil rate 1,2,4,8,1,1

14 3x3 conv, 2 features as 14(a) and 14(b) H x W x 2
15 dr: 14(a) + d3

L H x W
16 O: sigmoid on 14(b) H x W

Table 2: Refinement network for StereoDRNet. dr and O
represent refined disparity and occlusion probability respec-
tively.

puts and co-training of occlusion maps. Such enhancements
in the refinement procedure has never been proposed to the
best of our knowledge.

4. Effect of Refinement
Our refinement procedure not only improves the overall

disparity error but also makes the prediction geometrically
consistent. We calculate surface normal maps from dispar-
ity/depth maps using the approach described in KinectFu-
sion [6]. We use a surface normal error metric to measure
consistency in the disparity predictions (first order deriva-
tive). Figures 3 and 4 visualize how our refinement pro-
cedure improves the overall structure of objects. In some
cases such as in the first comparison in Fig. 3 we observe
little improvement in disparity prediction but large improve-
ment in surface normals. Figure 4 demonstrates real scene
disparity and derived surface normal predictions and proves
that our refinement procedure works well on real world data
in presence of shadows and dark lighting conditions. Dense
3D reconstruction methods such as KinectFusion [6] use
surface normals to calculate fusion parameters and confi-
dence weights, hence it is important to predict geometri-
cally consistent disparity or normal maps for high quality
3D reconstruction.

Index Layer Description Output
1 Input Image H x W x 3

Local feature extraction
2 3x3 conv, 32 features, stride 2 H/2 x W/2 x 32
3-4 (3x3 conv, 32 features) x 2 H/2 x W/2 x 32
5-7 (3x3 conv, 32 features, res block) x 3 H/2 x W/2 x 32
8 3x3 conv, 32 features, stride 2 H/4 x W/4 x 32
9-22 (3x3 conv, 64 features, res block) x 15 H/4 x W/4 x 64
23-28 (3x3 conv, 128 features, res block) x 6 H/4 x W/4 x 128

Spatial Pooling
29 Global Avg Pool on 28, bi-linear interp H/4 x W/4 x 128
30 Avg Pool 3x3 on 28, conv 3x3, dil rate 3 H/4 x W/4 x 128
31 Avg Pool 5x5 on 28, conv 3x3, dil rate 5 H/4 x W/4 x 128

32
Avg Pool 15x15 on 28, conv 3x3,

H/4 x W/4 x 128
dil rate 15

33 Concat 22, 28, 29, 30, 31 and 32 H/4 x W/4 x 704
34 3x3 conv, 128 features H/4 x W/4 x 128

35
1 x 1 conv, 32 features without BN

H/4 x W/4 x 32
and ReLU

Cost Volume

36
Subtract left 35 from right 35

D/4 x H/4 x W/4 x 64
with D/4 shifts,vice versa

Cost Filtering
37-38 (3x3x3 conv, 32 features) x 2 D/4 x H/4 x W/4 x 32
39 3x3x3 conv, 32 features, stride 2 D/8 x H/8 x W/8 x 32
40 3x3x3 conv, 32 features D/8 x H/8 x W/8 x 32
41 3x3x3 conv on 39, 32 features D/8 x H/8 x W/8 x 32
42 3x3x3 conv on 39, 32 features, dil rate 2 D/8 x H/8 x W/8 x 32
43 3x3x3 conv on 39, 32 features, dil rate 4 D/8 x H/8 x W/8 x 32

44
3x3x3 conv on concat(41,42,43),

D/8 x H/8 x W/8 x 32
32 features

45 3x3x3 deconv, 32 features, stride 2 D/4 x H/4 x W/4 x 32
46 Pred1: 3x3x3 conv on 45 + 38 D/4 x H/4 x W/4 x 2
47 3x3x3 conv on 45, 32 features, stride 2 D/8 x H/8 x W/8 x 32
48 3x3x3 conv + 40, 32 features D/8 x H/8 x W/8 x 32
49 3x3x3 conv on 48, 32 features D/8 x H/8 x W/8 x 32
50 3x3x3 conv on 48, 32 features, dil rate 2 D/8 x H/8 x W/8 x 32
51 3x3x3 conv on 48, 32 features, dil rate 4 D/8 x H/8 x W/8 x 32

52
3x3x3 conv on concat(49,50,51),

D/8 x H/8 x W/8 x 32
32 features

53 3x3x3 deconv, 32 features, stride 2 D/4 x H/4 x W/4 x 32
54 Pred2: 3x3x3 conv on 53 + 38 D/4 x H/4 x W/4 x 2
55 3x3x3 conv on 53, 32 features, stride 2 D/8 x H/8 x W/8 x 32
56 3x3x3 conv + 48, 32 features D/8 x H/8 x W/8 x 32
57 3x3x3 conv on 56, 32 features D/8 x H/8 x W/8 x 32
58 3x3x3 conv on 56, 32 features, dil rate 2 D/8 x H/8 x W/8 x 32
59 3x3x3 conv on 56, 32 features, dil rate 4 D/8 x H/8 x W/8 x 32

60
3x3x3 conv on concat(57,58,59),

D/8 x H/8 x W/8 x 32
32 features

61 3x3x3 deconv, 32 features, stride 2 D/4 x H/4 x W/4 x 32
62 Pred3: 3x3x3 conv on 61 + 38 D/4 x H/4 x W/4 x 2

Disparity Regression
63 Bi-linear interp of Pred1, Pred2, Pred3 D x H x W x 2
64 SoftArg Max of 63 to get d1, d2, d3 H x W x 2

Table 3: Full StereoDRNet architecture. Note that when
used without refinement, StereoDRNet just outputs d1, d2

and d3 for the left view.



Figure 2: This figure shows the textured 3D reconstructions of ”Sofa and cushions”, ”Plants and couch” and ”kitchen and
bike” scenes developed using KinectFusion [6, 10] of depth maps generated form StereoSDRNet with refinement. We
visualize the camera trajectory, from which the stereo images were taken, via a black curve. Note that for clarity we visualize
every 30th frame used by the fusion system.

Figure 3: This figure demonstrates the surface normal visualizations of some objects (labeled with red boxes) reconstructed
using single disparity map from SceneFlow dataset. We report EPE in disparity space and surface normal error in degrees.
Notice, our refinement network improves the overall structure of the objects and makes them geometrically consistent.



Figure 4: This figure shows the surface normal visualizations of some objects (labeled with red boxes) reconstructed using a
single disparity map from our real dataset. We report EPE in disparity space and surface normal error in degrees. Notice that
our refinement network improves the overall structure of the objects and makes them geometrically consistent.



Figure 5: This figure shows the disparity estimation results of our refined network, PSMNet [1] and DN-CSS [2] on the
lakeside and sandbox scenes from the ETH3D [8] two view stereo dataset.

Figure 6: This figure shows the disparity estimation results of our StereoDRNet and PSMNet [1] on the KITTI 2015 and the
KITTI 2012 dataset.
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