
Argoverse: 3D Tracking and Forecasting with Rich Maps
Supplementary Material

Ming-Fang Chang∗1,2, John Lambert∗1,3, Patsorn Sangkloy∗1,3, Jagjeet Singh∗1, Sławomir Bąk1,
Andrew Hartnett1, De Wang1, Peter Carr1, Simon Lucey1,2, Deva Ramanan1,2, and James Hays1,3

1Argo AI, 2CMU, 3Georgia Institute of Technology

Abstract

In this supplementary material, we present additional
details about our map (Section 1), our trajectory mining
(Section 2), and our 3D tracking algorithm (Section 3).

1. Supplemental Map Details
In this section, we describe details of our map coordi-

nate system and the functions exposed by our map API, and
we visualize several semantic attributes of our vector map.
Our map covers 204 linear kilometers of lane centerlines in
Miami and 86 linear kilometers in Pittsburgh. In terms of
driveable area, our map covers 788,510 m2 in Miami and
286,104 m2 in Pittsburgh.

1.1. Coordinate System

The model of the world that we subscribe to within our
map and dataset is a local tangent plane centered at a central
point located within each city. This model has a flat earth
assumption which is approximately correct at the scale of a
city. Thus, we provide map object pose values in city co-
ordinates. City coordinates can be converted to the UTM
(Universal Transverse Mercator) coordinate system by sim-
ply adding the city’s origin in UTM coordinates to the ob-
ject’s city coordinate pose. The UTM model divides the
earth into 60 flattened, narrow zones, each of width 6 de-
grees of longitude. Each zone is segmented into 20 latitude
bands.

We favor a city-level coordinate system because of its
high degree of interpretability when compared with geocen-
tric reference coordinate systems such as the 1984 World
Geodetic System (WGS84). While WGS84 is widely used
by the Global Positioning System, the model is difficult to
interpret at a city-scale; because its coordinate origin is lo-
cated at the Earth’s center of mass, travel across an entire

∗Equal contribution.

city corresponds only to pose value changes in the hun-
dredth decimal place. The conversion back and forth be-
tween UTM and WGS84 is well-known and is documented
in detail in [13].

We provide ground-truth object pose data in the ego-
vehicle frame, meaning a single SE(3) transform is required
to bring points into the city frame for alignment with the
map:

pcity = (cityTegovehicle) (pegovehicle)

Figure 1 shows examples of the centerlines which are
the basis of our vector map. Centerline attributes include
whether or not lane segments are in an intersection, and
which lane segments constitute their predecessors and suc-
cessors.

1.2. Map API and Software Development Kit

The dataset’s rich maps are our most significant contri-
bution and we aim to make it easy to develop computer vi-
sion tools that leverage the map data. Figure 3 describes
several functions which we hope will make it easier for re-
searchers to access the map. Our API is provided in Python.
For example, our API can provide rasterized bird’s eye view
(BEV) images of the map around the egovehicle, extending
up to 100 m in all directions. It can also provide a dense 1
meter resolution grid of the ground surface, especially use-
ful for ground classification when globally planar ground
surface assumptions are violated (see Figure 4).

These dense, pixel-level map renderings, similar to vi-
sualizations of instance-level or semantic segmentation [3],
have recently been demonstrated to improve 3d perception
and are relatively easy to use as an input to a convolutional
network [14, 2].

We provide our vector map data in a modified Open-
StreetMap (OSM) format, i.e. consisting of “Nodes” (way-
points) composed into “Ways” (polylines) so that the com-
munity can take advantage of open source mapping tools
built to handle OSM formats. The data we provide is richer

1



(a) (b) (c)

Figure 1: (a) Lane centerlines and hallucinated area are shown in red and yellow, respectively. We provide lane centerlines
in our dataset because simple road centerline representations cannot handle the highly complicated nature of real world
mapping, as shown above with divided roads. (b) We show lane segments within intersections in pink, and all other lane
segments in yellow. Black shows lane centerlines. (c) Example of a specific lane centerline’s successors and predecessors.
Red shows the predecessor, green shows the successor, and black indicates the centerline segment of interest.

Figure 2: Ring Camera Examples. Scenes captured in Miami, Florida, USA (top) and Pittsburgh, Pennsylvania, USA
(bottom) with our ring camera. Each row consists of 7 camera views with overlapping fields of view. Camera order is
rear_left, side_left, front_left, front_center, front_right, side_right, rear_right

than existing OSM data which does not contain per-lane or
elevation information.

2. Supplemental Details on Mined Trajectories
for Forecasting

In this section, we describe our approach for mining data
for trajectory forecasting. The scenarios challenging for a
forecasting task are rare but with a vector map, they are easy
to identify. We focus on some specific behavioral scenarios
from over 1006 driving hours. For every 5 second sequence,
we assign an interesting score to every track in that se-
quence. A high interesting score can be attributed to one or
more of the following cases wherein the track is: at an inter-
section with or without traffic control, on a right turn lane,
on a left turn lane, changing lanes to a left or right neighbor,
having high median velocity, having high variance in veloc-
ity and visible for a longer duration. We give more impor-
tance to changing lanes and left/right turns because these
scenarios are very rare. If there are at least 2 sufficiently
important tracks in the sequence, we save the sequence for
forecasting experiments. Further, the track which has the
maximum interesting score and is visible through out the
sequence is tagged as the Agent. The forecasting task is

then to predict the trajectory of this particular track, where
all the other tracks in the sequence can be used for learning
social context for the Agent. There is also a 2.5 secs over-
lap between 2 consecutive sequences. This means the same
track id can be available in 2 sequences, albeit with different
trajectories.

3. Supplemental Tracking Details
In this section, we describe our tracking pipeline in

greater detail.

3.1. Tracker Implementation Details

Because of space constraints we could not fit all details
of our 3D tracking pipeline in the main paper. We do not
claim any novelty for this ‘baseline’ tracker, but it works
reasonably well, especially with map information to make
the task easier (e.g. driveable area, ground height, and lane
information). Our tracker tracks the position and velocity
of surrounding vehicles from LiDAR data. The tracking
pipeline has the following stages:

1. Segmentation and Detection. In order to segment
a point cloud into distinct object instances, we exploit the
complementary nature of our two sensor modalities. First,

2



Function name Description

remove_non_driveable_area_points Use rasterized driveable area ROI to decimate LiDAR point cloud to
only ROI points.

remove_ground_surface Remove all 3D points within 30 cm of the ground surface.
get_ground_height_at_xy Get ground height at provided (x,y) coordinates.
render_local_map_bev_cv2 Render a Bird’s Eye View (BEV) in OpenCV.
render_local_map_bev_mpl Render a Bird’s Eye View (BEV) in Matplotlib.
get_nearest_centerline Retrieve nearest lane centerline polyline.
get_lane_direction Retrieve most probable tangent vector ∈ R2 to lane centerline.
get_semantic_label_of_lane Provide boolean values regarding the lane segment, including is_intersection

turn_direction, and has_traffic_control.
get_lane_ids_in_xy_bbox Get all lane IDs within a Manhattan distance search radius in the xy plane.
get_lane_segment_predecessor_ids Retrieve all lane IDs with an incoming edge into the query lane segment in the

semantic graph.
get_lane_segment_successor_ids Retrieve all lane IDs with an outgoing edge from the query lane segment.
get_lane_segment_adjacent_ids Retrieve all lane segment IDs of that serve as left/right neighbors to the query

lane segment.
get_lane_segment_centerline Retrieve polyline coordinates of query lane segment ID.
get_lane_segment_polygon Hallucinate a lane polygon based around a centerline using avg. lane width.
get_lane_segments_containing_xy Use a “point-in-polygon” test to find lane IDs whose hallucinated lane polygons

contain this (x, y) query point.

Figure 3: Example Python functions in the Argoverse map API.

Figure 4: A scene with non-planar ground surface. The col-
ored LiDAR returns have been classified as ground based
on the map. Points outside the driveable area are also dis-
carded. This simple distance threshold against a map works
well, even on the road to the left which goes steeply uphill.

using Mask R-CNN [5], we obtain object masks in pixel
space and discard any LiDAR returns whose image projec-
tion does not fall within a mask. We then geometrically
cluster the remaining 3D LiDAR point cloud into separate
objects according to density, using DBSCAN [4].

Others have proposed compensating for point cloud un-
dersegmentation and oversegmentation scenarios by condi-

tioning on the data association and then jointly track and
perform probabilistic segmentation [6]. We can avoid many
such segmentation failures with the high precision of our
Mask R-CNN network 1. We also eliminate the need for an
object’s full, pixel-colored 3D shape during tracking, as oth-
ers have suggested [8, 7]. We prefer density-based cluster-
ing to connected components clustering in a 2D occupancy
grid [9, 10] because the latter approach discards information
along the z-axis, often rendering the method brittle.

To help focus our attention to areas that are important for
a self driving car, we only consider points within the region
of interest (ROI) defined by the driveable area map, and not
on the ground.

While segmentation provides us a set of points belong-
ing to an object, we need to determine if this is an object of
interest that we want to track. Unlike in image space, ob-
jects in a 3D have consistent sizes. We apply heuristics that
enforce the shape and volume of a typical car and thereby
identify vehicle objects to be tracked. We estimate the cen-
ter of an object by fitting a smallest enclosing circle over the
segment points.

2. Association. We utilize the Hungarian algorithm to
obtain globally optimal assignment of previous tracks to
currently detected segments where the cost of assignment
is based on spatial distance. Typically, tracks are simply

1We use a public implementation available at https://github.
com/facebookresearch/maskrcnn-benchmark.

3

https://github.com/facebookresearch/maskrcnn-benchmark
https://github.com/facebookresearch/maskrcnn-benchmark


assigned to their nearest neighbor in the next frame.
3. Tracking. We use ICP (Iterative Closest Point) from

the Point Cloud Library [12] to estimate relative transforma-
tion between corresponding point segments for each track.
Then we apply a Kalman Filter (KF) [7] with ICP results
as the measurement and a static motion model (or constant
velocity motion model, depending on the environment) to
estimate vehicle poses for each tracked vehicle. We assign
a fixed size bounding box for each tracked object. The KF
state is comprised of both the 6 dof pose and velocity.

3.2. Tracking Evaluation Metrics

We use standard evaluation metrics commonly used for
multiple object trackers (MOT) [11, 1]. The MOT metric
relies on centroid distance as distance measure.

• MOTA(Multi-Object Tracking Accuracy):

MOTA = 100∗ (1−
∑

t FNt + FPt + IDsw∑
t GT

) (1)

where FNt, FPt, IDsw, GT denote number of false
negative, false positives, number of ID switches, and
ground truths. We report MOTA as percentages.

• MOTP(Multi-Object Tracking Precision):

MOTP =

∑
i,t D

i
t∑

t Ct
(2)

where Ct denotes the number of matches, and Di
t de-

notes the distance of matches.

• IDF1 (F1 score):

IDF1 = 2
precision ∗ recall
precision+ recall

(3)

Where recall is the number of true positives over num-
ber of total ground truth labels. precision is the num-
ber of true positives over sum of true positives and
false positives.

• MT (Mostly Tracked): the ratio of trajectories tracked
more than 80% of its lifetime.

• ML (Mostly Lost): the ratio of trajectories tracked
less than 20% of its lifetime.

• FP (False Positive): Total number of false positives

• FN (False Negative): Total number of false negatives

• IDsw (ID Switch): number of identified ID switches

• Frag (Fragmentation): Total number of switches
from "tracked" to "not tracked"

(a) Fixed inter-centroid distance of
√
2 m.

(b) Fixed 2D intersection area of 2 m2.

Figure 5: We compare thresholding true positives (TP) and
false positives (FP) of matched cuboid shapes using inter-
centroid distance (above) versus using 2D/3D IoU (below).
Above: fixed inter-centroid distance, from left to right: IoU
values of 0.143, 0.231, 0.263. Below: fixed intersection
area, from left to right, IoU values of 0.2, 0.125, 0.053.

3.3. True Positive Thresholding Discussion

Intersection-over-Union (IoU) is designed as a scale in-
variant metric, meaning that doubling the size and relative
overlap of two boxes will not change its value. However, we
counter that 3d tracking evaluation should not be performed
in a strictly scale invariant manner. Absolute error matters,
especially in 3d. In 2d tasks (e.g. object detection) we have
only pixels which could be any real world size, whereas in
3d we have absolute lengths. When using IOU as a TP/FP
threshold, with fixed intersection area, IoU for larger vehi-
cles is penalized unfairly (see Figure 5). On the other hand,
with a fixed distance between associated centroids, the IoU
increases with larger vehicles. In the LiDAR domain, these
problems are exaggerated because the sampling density can
be quite low, especially for distant objects. In 2d object de-
tection, we rarely try to find objects that are 3 pixels in size,
but small, distant objects frequently have 3 LiDAR returns
and thus accurate determination of their spatial extent is dif-
ficult.

References

[1] K. Bernardin and R. Stiefelhagen. Evaluating multiple object
tracking performance: The clear mot metrics. EURASIP J.
Image and Video Processing, 2008, 2008. 4

[2] S. Casas, W. Luo, and R. Urtasun. Intentnet: Learning to pre-
dict intention from raw sensor data. In A. Billard, A. Dragan,
J. Peters, and J. Morimoto, editors, Proceedings of The 2nd
Conference on Robot Learning, volume 87 of Proceedings of

4



(a) Argoverse LiDAR (b) Argoverse LiDAR

(c) KITTI LiDAR (d) nuScenes LiDAR

Figure 6: Above: Sample LiDAR sweeps in the ego-vehicle
frame, with marked x and y axes, with x ∈ [−200, 200] and
y ∈ [−160, 160] for all plots. The Argoverse LiDAR has
twice the range of the sensors used to collect the KITTI or
nuScenes datasets, allowing us to observe more objects in
each scene.

Machine Learning Research, pages 947–956. PMLR, 29–31
Oct 2018. 1

[3] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler,
R. Benenson, U. Franke, S. Roth, and B. Schiele. The
cityscapes dataset for semantic urban scene understanding.
In Proc. of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2016. 1

[4] M. Ester, H. peter Kriegel, J. Sander, and X. Xu. A density-
based algorithm for discovering clusters in large spatial
databases with noise. pages 226–231. AAAI Press, 1996.
3

[5] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask R-
CNN. In Proceedings of the International Conference on
Computer Vision (ICCV), 2017. 3

[6] D. Held, D. Guillory, B. Rebsamen, S. Thrun, and
S. Savarese. A probabilistic framework for real-time 3d seg-
mentation using spatial, temporal, and semantic cues. In Pro-
ceedings of Robotics: Science and Systems, 2016. 3

[7] D. Held, J. Levinson, and S. Thrun. Precision tracking with
sparse 3d and dense color 2d data. In ICRA, 2013. 3, 4

[8] D. Held, J. Levinson, S. Thrun, and S. Savarese. Combin-
ing 3d shape, color, and motion for robust anytime tracking.
In Proceedings of Robotics: Science and Systems, Berkeley,
USA, July 2014. 3

[9] M. Himmelsbach and H. Wünsche. Lidar-based 3d object
perception. In Proceedings of 1st International Workshop on
Cognition for Technical Systems, 2008. 3

[10] J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held,
S. Kammel, J. Z. Kolter, D. Langer, O. Pink, V. R. Pratt,
M. Sokolsky, G. Stanek, D. M. Stavens, A. Teichman,
M. Werling, and S. Thrun. Towards fully autonomous driv-
ing: Systems and algorithms. In IEEE Intelligent Vehicles

Symposium (IV), 2011, Baden-Baden, Germany, June 5-9,
2011, pages 163–168, 2011. 3

[11] A. Milan, L. Leal-Taixé, I. Reid, S. Roth, and K. Schindler.
MOT16: A benchmark for multi-object tracking.
arXiv:1603.00831 [cs], Mar. 2016. arXiv: 1603.00831. 4

[12] R. Rusu and S. Cousins. 3d is here: Point cloud library
(pcl). In Robotics and Automation (ICRA), 2011 IEEE In-
ternational Conference on, pages 1 –4, may 2011. 4

[13] J. P. Snyder. Map projections: A working manual. u.s. geo-
logical survey professional paper. page 61, 1987. 1

[14] B. Yang, M. Liang, and R. Urtasun. Hdnet: Exploiting hd
maps for 3d object detection. In A. Billard, A. Dragan,
J. Peters, and J. Morimoto, editors, Proceedings of The 2nd
Conference on Robot Learning, volume 87 of Proceedings of
Machine Learning Research, pages 146–155. PMLR, 29–31
Oct 2018. 1

5


