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1. Appendix.A
1.1. Unsupervised Meta-learner

Our meta-learnerU is trained as deep embedding cluster-
ing ([15]) by receiving data and its feature-level feedbacks
(the concatenation of the feature input to the discriminators
and its classification result, for brevity, we mark F (x(t)) in
our paper). It is very important to note that, distinguished
from the original version solely using a DAE to initiate data
embeddings, our meta-learner leverage the improved DEC
[5] as our implementation, where the clustering embeddings
are updated by reconstruction loss as well as the clustering
objective w.r.t. centroids {µj}kj=1. Therefore, U1, U2 and
{µj}kj=1 are alternatively updated by
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where α and m denote the learning rate and mini-batch size
for optimizing meta-learner. We set initial learning rate as
0.001 and batch size is 256. The auto-encoder architecture
implemented in our experiments has been shown in Table.1.

1.2. Entropy Penalty

In our implementation, we leverage a well-known cluster
assumption [4] to regulate the classifier C learning with un-
labeled target data. It can be interpreted as the minimization
of the conditional entropy term with respect to the output of
C
(
F (x)

)
Lent(F,C) = −Ex∼T C
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)T
log C

(
F (x)

)
(2)

. The objective forces the classification to be confident on

∗Corresponding author: Liang Lin.

Table 1. The architecture of our unsupervsied meta-learner.

Input size Output size Activator

Encoder:
En Fc 1 image size 500 ReLU
En Fc 2 500 1000 ReLU
En Fc 3 1000 k ReLU
Decoder:
De Fc 1 k 1000 ReLU
De Fc 2 1000 1000 ReLU
De Fc 3 1000 image-size ReLU

the unlabeled target example, which drives the classifier’s
decision boundaries away from the target unlabeled exam-
ples. It has been applied in wide range of domain adapta-
tion researches [12] [9] [3]. However, while using available
data to empirically estimate the expected loss, [4] demon-
strates that such approximation provably breaks down if
C
(
F (·)

)
does not satisfy local Lipschitz condition. Specif-

ically, the classifier without local Lipschitz constraint can
abruptly changes its prediction, which allows placement of
the classifier decision boundaries close to target training ex-
amples while the empirical conditional entropy is still min-
imized. To prevent this issue, we follow the technique in
[13] where virtual adversarial perturbation term [11] is in-
corporated to regulate the classifier and feature extractor:
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(3)
where DKL indicates KL divergence. r indicates the vir-
tual adversarial perturbation upper bounded by a magnitude
ε > 0 on source and target images (x(s) ∈ S and x(t) ∈ T
), which are obtained by maximizing the classification dif-
ferences betweenC

(
F (x(s))

)
andC

(
F (x(s)+r)

)
. This re-

strictions are simultaneously proposed on source and target
and ρ is the balance factor between them. In this way, the
collaborative meta-adversarial adaptation objectives (Eq.8-
10 in our paper) are reformulated as:
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Table 2. Backbone-1 in digit-five experiment.

Kernel size Output dimension BN/IN Activation Dropout

Feature extractor:
Conv1 1 5*5 64*24*24 BN ReLU 0
Maxpool 2*2 64*12*12 0.5
Conv1 2 5*5 50*8*8 BN ReLU 0
Maxpool 2*2 50*4*4 0.5
Classifier:
Fc 1 50*4*4 100 BN ReLU 0.5
Fc 2 100 100 BN ReLU 0
Fc 3 100 10 Softmax 0
Discriminator:
Reversed gradient layer
Fc 50*4*4 100 BN ReLU 0
Fc (Dst) 100 2 Softmax 0
Fc (Dmt) 100 4 Softmax 0

Table 3. Backbone-2 in digit-five experiment.

Kernel size Output dimension BN/IN Activation Dropout

Feature extractor:
Conv1 1 3*3 64*32*32 IN/BN LeakyReLU(0.1) 0
Conv1 2 3*3 64*32*32 BN LeakyReLU(0.1) 0
Conv1 3 3*3 64*32*32 BN LeakyReLU(0.1) 0.5
Maxpool 2*2 64*16*16
Conv2 1 3*3 64*16*16 BN LeakyReLU(0.1) 0
Conv2 2 3*3 64*16*16 BN LeakyReLU(0.1) 0
Conv2 3 3*3 64*16*16 BN LeakyReLU(0.1) 0.5
Maxpool 2*2 64*8*8
Classifier:
Conv2 1 3*3 64*8*8 BN LeakyReLU(0.1) 0
Conv2 2 3*3 64*8*8 BN LeakyReLU(0.1) 0
Conv2 3 3*3 64*8*8 BN LeakyReLU(0.1) 0
Averagepool 64*1*1
Fc 64*10 10 Softmax 0
Discriminator:
Fc 64*8*8+10 100 ReLU 0
Fc (Dst) 100*1 1 Sigmoid 0
Fc (Dmt) 100*4 4 Softmax 0

max
Dst,Dmt

min
F,C

Vjoint(Dst, Dmt, F, C)

= Vst(F,Dst, C) + γVmt(F,Dmt)

+ βLent(F,C) + Lvir(F,C)

(4)

and

max
Dst,Dmt

Valter(Dst, Dmt) = Vst(F,Dst, C) + Vmt(F,Dmt)

(5)

min
F,C

Valter(F,C) =Vst(F,Dst, C) + γṼmt(F,Dmt)

+ βLent(F,C) + Lvir(F,C)
(6)

. We provide the ablation study of the entropy penalty in
Table 5 .

1.3. The Selection of k

In AMEAN, k denotes the number of sub-target domains
and is pre-given. Table 6 demonstrates that choosing k as
the number of sub-targets leads to the superior performance
of AMEAN. However, whether AMEAN would achieve the
better performance if k is adaptively determined, remains an
open and interesting question. We would like to investigate
this topic in the future.

1.4. Architectures
The architectures for digit recognition in Digit-five have

been illustrated in Table.2 , 3 . The first backbone is based
on LeNet and the second is derived from [13] for compar-
ing their state-of-the-art models VADA and DIRT-T. The
architectures for object recognition in Office-31 and Office-
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Table 4. The hyper-parameters setting in our experiment.
Office-31, Office-HOME Digit-five

AlextNet ResNet-50 Backbone-1 Backbone-2

mini-batch size 32 32 128 100

λ 0.1 1 1 1 (update Dst) / 0.01 (update F )

γ 0.01 iter
maxiter

0.1 iter
maxiter

β 0.01 0.1 0 0.01

ρ 0.01 0 0 0.01

M 2000 2000 20000 10000

image size 227×227 227×227 28×28 28×28

Table 5. Some ablation of entropy term.
mt→mm,sv,up,sy mm→mt,sv,up,sy D→A,W W→A,D

w 85.1 77.6 62.8 59.7
w/o 83.7 76.9 62.6 59.2

Table 6. Acc is the average accuracy over five sub-transfer tasks in
Digit-five. The number of sub-targets in Digit-five is 4.

k 2 3 4 5 6 7 8
Acc 79.3 83.2 83.7 82.1 83.2 82.0 78.6

Home are based on AlexNet and ResNet-50, which are con-
sistent with the previous studies [7] [8] [9] [1] .

1.5. Training Details
We evenly separate the proportion of the source and tar-

get examples in each mini-batch. Concretely, we promise
that a half of examples in a mini-batch are drawn from
S and the rest belong to the mixed target domain training
set T train: In digit-five, we randomly drew target exam-
ples from the mixed target set T train to construct our mini-
batches; In Office-31 and Office-Home, we promise the
number of target examples from different meta-sub-target
are the same by repeat sampling.

In the Digit-five experiment, we add a confusion loss [6]
w.r.t. S to train the backbone-2. It stabilizes the alternating
adaptation since the mixed target in Digit-five is more di-
verse than the other benchmarks’ and the alternating learn-
ing manner is quite instable in these scenarios. The imple-
mentation can be found in our code.

The hyper-parameters are shown in Table 4 .

2. Appendix.B
2.1. Evalutation Metrics for BTDA

We elaborate how to calculate ANT and RNT in our ex-
periment in details:

ANT = max{0, AccBTDA −AccSource−only} (7)

where AccSource−only denotes the classification accuracy
about the model trained on the source labeled dataset S and
tested on the mixed target set T test =

k
∪
j=1
T test
j ; AccBTDA

denotes the multi-target-weighted classification accuracy of
the evaluated DA model under BTDA setup:

AccBTDA =

k∑
j=1

αjAcc
(j)
BTDA (8)

where Acc(j)BTDA denotes the DA model classification ac-
curacy on the jth sub-target domain test set T test

j when
the evaluated DA models (e.g., JAN, DAN, AMEAN, etc)
is trained with the source labeled set S and the mixed
target unlabeled set T train =

k
∪
j=1
T train
j (BTDA setup).

{αj}kj=1 denotes the proportion of the multi-target mixture.
It is derived from the domain-set proportion in benchmarks,
which are valued by {0.236, 0.236, 0.236, 0.236, 0.056},
{0.686, 0.121, 0.193} and {0.155, 0.280, 0.285, 0.280} in
Digit-five, Office-31 and Office-Home. When we draw the
subset of domains to construct the mixed target, {αj}kj=1 is
obtained by normalizing these corresponding benchmark-
specific domain-set proportion 1 .

In reality, we can obtain AccBTDA by directly evalu-
ating the DA models on the mixed test set T test

j , which
leads to the same results in (8).

Based on (8), we also define the RNT metric

RNT = AccBTDA −
k∑
j=1

αjAccj (9)

where Accj denotes the jth-target test classification accu-
racy with respect to a single-target DA classifier trained on

1The numbers are based on the hidden sub-target test set proportions in
a mixed target
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the source labeled set S and the jth sub-target unlabeled set
T train
j . Note that,

• Accj is derived from a DA model trained with datasets
S and T train

j . It means that Acci, Accj (i 6= j) are
derived from different DA models, which employ the
same DA algorithms yet are trained on T train

i , T train
j

and tested on T test
i , T test

j , respectively.
• Acc(j)BTDA is derived from a DA model trained with S

and T train =
k
∪
j=1
T train
j . Hence Acc(i)BTDA, Acc(j)BTDA

(i 6= j) are derived from the same DA model, which
employ the same DA algorithms and is trained on (S ∪
T train) and then, tested on T test

i and T test
j to induce

Acc
(i)
BTDA, Acc(j)BTDA.

.
Equal-weight ANT, RNT. It worth noting that, though

ANT/RNT in (7),(9) are able to reflect BTDA models’ per-
formances on a mixed target domain set, it is not enough to
demonstrate the comprehensive performances of the mod-
els over multi-sub-target domains, since it does not equally
weight hidden sub-target domains. More specifically, imag-
ine that we have a small set of target images belonging to
a hidden sub-target, which the model performs poorly on.
Then the RNT metric would shield the model’s incapacity
on that domain.

In order to thoroughly reflect the capacities of evaluated
models, we additionally report the results when the propor-
tion {αj}kj=1 is equally set. In particular, we tend to con-

sider the equal-weight classification accuracy (Acc(EW)
BTDA),

and quantify the corresponding negative transfer ANTEW
and RNTEW in this setup:

Acc
(EW)
BTDA =

1

k

k∑
j=1

Acc
(j)
BTDA

ANTEW = max{0, Acc(EW)
BTDA −Acc

(EW)
Source−only}

RNTEW = Acc
(EW)
BTDA −

1

k

k∑
j=1

Accj

(10)

. The metrics developed from (7 8 9) could be viewed as the
complementary of what we report in the paper.

2.2. Evaluated Baselines in BTDA setup.

Beyond our AMEAN model, we also reported the BTDA
performances from state-of-the-art DA baselines in Digit-
five, Office-31, Office-Home. The baselines include Deep
Adaptation Network (DAN) [7], Residual Transfer Network
(RTN) [9], Joint Adaptation Network (JAN) [10], Generate
To Adapt (GTA) [12], Adversarial Discriminative Domain
Adaptation (ADDA) [14], Reverse Gradient (RevGrad) [1]
[2], Virtual Adversarial Domain Adaptation (VADA) [13]
and its variant DIRT-T [13].

In the Digit-five experiment, DAN, ADDA, GTA, Re-
Grad are all derived from their official codes. To promise
a fair comparison, we standardize the backbones by LeNet
to report AccBTDA, Acc(EW)

BTDA and the negative transfer ef-
fects. VADA and DIRT-T are evaluated by their official
codes to provide the results. Their model architectures are
consistent with our backbone-2.

In the Office-31 and Office-Home experiments, we em-
ploy the official codes of DAN, RTN, JAN, ReGrad to re-
port AccBTDA, Acc(EW)

BTDA in the Office-31 and Office-Home
experiments.

The codes of all evaluated baselines can be found in their
literatures. For a fair comparison, Accj mainly originates
from the reported results in their papers.

2.3. BTDA experiments by equal-weight evaluation
metrics

The equal-weight versions of the classification accuracy
(Acc(EW)

BTDA), absolute negative transfer (ANTEW ) and rela-
tive negative transfer RNTEW over all the evaluated base-
lines in Digit-five, Office-31 and Office-Home are reported
in Table 7- 11.
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Table 7. The equal-weight (EW) Classification accuracy (ACC %), absolute negative transfer (ANT%) and relative negative transfer
(RNT%) on Digit-five in BTDA setup. BLUE, RED indicate ANT and RNT, respectively. More viewed in (10).

Models mt→mm,sv,up,sy mm→mt,sv,up,sy sv→mm,mt,up,sy sy→mm,mt,sv,up up→mm,mt,sv,sy Avg
ACCANT RNT ACCANT RNT ACCANT RNT ACCANT RNT ACCANT RNT ACCANT RNT

Backbone-1:
Source only 36.6 0 57.3 0 67.1 0 74.9 0 36.9 0 54.6 0
ADDA 52.5 -7.4 58.9 -1.2 46.4(−20.7) -16.0 67.0(−7.9) -7.0 34.8(−2.1) -13.3 51.9(−2.7) -9.0
DAN 38.8 -8.6 53.5(−3.8) -4.5 55.1(−12.0) -3.0 65.8(−9.1) -2.8 27.0(−9.9) -11.0 48.0(−6.6) -6.0
GTA 51.4 -9.0 54.2(−3.1) -2.1 59.8(−7.3) -3.6 76.2(+1.3) -0.6 41.3 -2.0 56.6 -3.6
RevGrad 60.2 -6.2 66.0 -4.6 64.7(−2.3) -6.0 69.2(−5.7) -7.1 44.3 -6.3 60.9 -6.0
AMEAN 61.2 (+1.0) - 66.9 (+0.9) - 67.2 (+0.1) - 73.3(−1.6) - 47.5 (+3.2) - 63.2 (+2.3) -
Backbone-2:
Source only 55.8 0 55.2 0 74.3 0 76.4 0 50.6 0 62.5 0
VADA 79.4 -4.9 72.5 -3.1 76.4 -2.2 82.8 -3.8 56.4 -8.7 73.5 -4.5
DIRT-T 77.5 -6.5 76.8 -4.4 79.7 (+1.8) -4.9 80.9 -3.9 47.0 -7.5 72.4 -5.5
AMEAN 86.9 (+7.5) - 78.5 (+1.7) - 77.9 - 85.6 (+2.8) - 75.5 (+19.1) - 80.9 (+7.4) -

Table 8. The equal-weight (EW) Classification accuracy (ACC %), absolute negative transfer (ANT%) and relative negative transfer
(RNT%) on Office31 in BTDA setup. BLUE, RED indicate ANT and RNT, respectively. More viewed in (10).

Backbones Models A→D,W D→A,W W→A,D Avg
ACCANT RNT ACCANT RNT ACCANT RNT ACCANT RNT

AlexNet

Source only 62.7 0 73.3 0 74.4 0 70.1 0
DAN 68.2 0.0 71.4(−1.9) -4.0 73.2(−1.2) -3.3 70.9 -2.4
RTN 70.7 -1.7 69.8(−3.5) -4.1 71.5(−2.9) -3.9 70.7 -3.2
JAN 73.5 -0.1 73.6 -4.1 75.0 -2.5 74.0 -2.2

RevGrad 74.1 1.0 72.1(−1.2) -2.8 73.4(−1.0) -1.8 73.2 -1.2
AMEAN (ours) 74.9 (+0.8) - 74.9 (+1.3) - 76.2 (+1.2) - 75.3 (+1.3) -

Table 9. The equal-weight (EW) Classification accuracy (ACC %), absolute negative transfer (ANT%) and relative negative transfer
(RNT%) on Office31 in BTDA setup. BLUE, RED indicate ANT and RNT, respectively. More viewed in (10).

Backbones Models A→D,W D→A,W W→A,D Avg
ACCANT RNT ACCANT RNT ACCANT RNT ACCANT RNT

ResNet-50

Source only 68.7 0 79.6 0 80.0 0 76.1 0
DAN 77.9 -2.0 75.0(−4.6) -5.0 80.0 -1.3 77.6 -3.0
RTN 84.1 +2.9 77.2(−2.4) -4.4 79.0(−1.0) -3.3 80.1 -1.6
JAN 84.6 -0.8 82.7 -0.6 83.4 -1.8 83.6 -1.0

RevGrad 79.0 -2.3 81.4 -1.5 82.3 -1.3 80.9 -1.7
AMEAN (ours) 89.8 (+5.2) - 84.6 (+1.9) - 84.3 (+0.9) - 86.2 (+2.6) -

Table 10. The equal-weight (EW) Classification accuracy (ACC %), absolute negative transfer (ANT%) and relative negative transfer
(RNT%) on OfficeHome in BTDA setup. BLUE, RED indicate ANT and RNT, respectively. More viewed in (10).

Backbones Models Ar→Cl,Pr,Rw Cl→Ar,Pr,Rw Pr→Ar,Cl,Rw Rw→Ar,Cl,Pr Avg
ACCANT RNT ACCANT RNT ACCANT RNT ACCANT RNT ACCANT RNT

AlexNet

Source only 33.4 0 35.3 0 30.6 0 37.9 0 34.3 0
DAN 39.7 -3.6 41.6 -2.8 37.8 -3.1 46.8 -2.4 41.5 -3.0
RTN 42.8 -2.0 43.4 -2.4 39.1 -2.1 48.8 -2.5 43.5 -2.2
JAN 43.5 -2.9 44.6 -3.5 39.4 -5.2 48.5 -5.2 44.0 -4.2

RevGrad 42.2 -3.3 43.8 -3.5 39.9 -3.6 47.7 -5.0 43.4 -3.9
AMEAN (ours) 44.6 (+1.1) - 45.6 (+1.0) - 41.4 (+1.5) - 49.3 (+0.5) 45.2 (+1.2) -

Table 11. The equal-weight (EW) Classification accuracy (ACC %), absolute negative transfer (ANT%) and relative negative transfer
(RNT%) on OfficeHome in BTDA setup. BLUE, RED indicate ANT and RNT, respectively. More viewed in (10).

Backbones Models Ar→Cl,Pr,Rw Cl→Ar,Pr,Rw Pr→Ar,Cl,Rw Rw→Ar,Cl,Pr Avg
ACCANT RNT ACCANT RNT ACCANT RNT ACCANT RNT ACCANT RNT

ResNet-50

Source only 47.6 0 41.8 0 43.4 0 51.7 0 46.1 0
DAN 55.6 -0.5 55.1 +0.9 47.8 -4.0 56.6 -6.3 53.8 -2.5
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