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1. Additional Results
In this supplementary material we added the ablation study of the ENet [1] and MobileNetV2-UNet [2, 3] on the Deep-

Globe dataset [4], since they are very efficient off-the-shelf backbones and their designs considered the accuracy-efficiency
trade-off. Table 1 list a complete ablation study of mIoU and memory usage comparison on the DeepGlobe dataset. From
Table 1 we can see that all models achieve higher mIoU under global inference, but consume very high GPU memories. Their
memory usages will drop if adopting patch-based inference, but accuracies also deteriorate accordingly. Our GLNet achieves
the best trade-off between mIoU and GPU memory usage. We also included a detailed comparison of the performance
of our GLNet with different patch sizes in Figure 1 (c), where the zoom-in panel shows that the accuracy of our GLNet
is highly preserved under different patch sizes, and the GPU memory usage has the minimum changes comparing to the
FCN-8s[5] and the ICNet [6].
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Figure 1: Inference memory and mean intersection over union (mIoU) accuracy on the DeepGlobe dataset [4]. (a): Com-
parison of best achievable mIoU v.s. memory for different segmentation methods. (b): mIoU/memory with different global
image sizes (downsampling rate shown in annotations). (c): mIoU/memory with different local patch sizes (normalized patch
size shown in annotations), with the zoom-in panel showing the performance of the GLNet with different patch sizes. GLNet
(red dots) integrates both global and local information in a compact way, contributing to a well-balanced trade-off between
accuracy and memory usage. See Section 4.3 for experiment details. Methods studied: ICNet [6], DeepLabv3+ [7], FPN [8],
FCN-8s [5], UNet [9], PSPNet [10], SegNet [11], ENet [1], MobileNetV2-UNet [2, 3], and the proposed GLNet.

We have chosen several state-of-the-art models with public implementations for comparison on the DeepGlobe [4], ISIC
[12, 13], and Inria Aerial [14] Datasets. These datasets have segmentation performance leaderboards, but most leading models
either do not disclose full technical details, or rely on heavily parameterized ensemble models for accuracy (thus unfair to
compare with). Furthermore, few models on leaderboards open-sourced their implementations, making us unable to test their
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Table 1: Predicted mIoU and inference memory usage on the local DeepGlobe test set. ‘G → L’ and ‘G � L’ means feature
map sharing from the global to local branch and bidirectionally between two branches respectively. Note that our GLNet
does not inference with global images.

Model
Patch Inference Global Inference

mIoU(%) Memory(MB) mIoU(%) Memory(MB)

UNet[9] 37.3 949 38.4 5507
ICNet[6] 35.5 1195 40.2 2557
PSPNet[10] 53.3 1513 56.6 6289
SegNet[11] 60.8 1139 61.2 10339
DeepLabv3+[7] 63.1 1279 63.5 3199
FCN-8s[5] 64.3 1963 70.1 5227
ENet[1] 55.5 680 56.1 2405
MobileNetV2-UNet[2, 3] 59.9 785 54.5 1797

mIoU(%) Memory(MB)

GLNet: G → L 70.9 1395
GLNet: G � L 71.6 1865

GPU memory usages. Instead, we notice that most single models on leaderboards are modified from latest backbones like
UNet, FCN, and FPN, with standard implementations available. Therefore, we fine-tune those backbones’s performance on
each dataset, and make them as our comparision subjects. Also because the challenge testing sets are not publicly available,
we make fair comparisons on our own training-testing split, unless otherwise stated.

2. Training Strategy in Details
We depict our training strategy details in the Algorithm 1. ‘G → L’ stands for the deep feature map from the global to

local branch, and ‘G � L’ means the deep feature map sharing bidirectionally between two branches. The ‘Focal’ stands
for the Focal Loss [15] we used in our experiments with γ = 6.

Algorithm 1 Collaborative Global-Local Networks
Input: Ultra-high resolution images and segmentation maps D = {(Ii,Si)}Ni=1 where Ii,Si ∈ RH×W , down-sampled low resolution
images and segmentation maps Dlr = {(I lr

i ,S
lr
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i ,S
lr
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{{(Ihr
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N
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i ,S
hr
i ∈ Rh2×w2 . h1, h2 � H , and w1, w2 �W

Output:
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G
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Agg
i = fagg(X̂

G
i,L, X̂

L
i,L)

13 min
fG

feature,f
G
clf,fagg

1
n

N∑
i=1

Focal(ŜGi ,S
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