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1. Setup and Prototype Details

In this section, we provide a detailed description of the setup components and calibration procedures.

1.1. Setup Details

We design the proposed illumination setup with the goal of illuminating a visible wall surface with a high-power collinear

white light beam that can be steered to points on this wall using a dual-axis galvo system. This objective can be reached

by several methods, but many of them are expensive or request a lot of laboratory time to get a decent beam shape. While

white LED sources are inexpensive and can provide high illumination powers, they are area sources and hence the output

beam is so wide that only very complicated and costly inverse beam expander setups achieve a collinear beam enough

powerful. Alternatively, white light sources such as supercontinuum lasers or Quartz-Tungsten-Halogen illuminators (and

other lamp types) coupled with a fiber optic light guides would allow to generate a collimated white beam, but only at a limited

output power with existing hardware. Another problem using white sources results from the Gaussian beam limitation which

restraints the minimum achievable beam size. Forcing a reduced beam diameter can result in sufficient performance on tiny

propagation distances because the diffraction angle is different for each wavelength, causing chromatic distortion over long

light paths. Our setup has a light propagation length bigger than 2 m, which means we need long spatial coherence provided

by sources like lasers.

To tackle these competing design goals, we propose to recombine three inexpensive lasers with their central wavelength

corresponding to the center of the camera color filter spectra. One red laser (635 nm - 300 mW), green laser (532 nm -

200 mW) and blue laser (450 nm - 200 mW) are collinearized by two cheap Thorlabs soda-lime hot/cold dichroic mirrors

(FM02R and FM04R) placed with an incidence angle of 45°. These mirrors have a high reflection/transmission percentage

(87% to 98%) that allows to maintains enough power in the generated white light beam. We white balance the source by

adjusting the independent modulation of each laser power instead of white-balancing post-capture which leads to unfavorable

*The majority of this work was done while interning at Algolux.

Figure 1. Prototype RGB laser source showing the path of the light, that ends in a dual-axis galvo. Left: variable neutral density (ND)

filters and one analog modulation is used to control the individual power of lasers. Long focal lenses combination and several irises reduce

the beam diameter. Right: only the white light path is shown. The camera is placed right next to the galvo.
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are equal, these two triangles are similar. Hence, the distance between l⊥ and c⊥ on the plane can be expressed as

‖l⊥ − c⊥‖ = ‖c− l+ n((c− l) · n)‖ = k + k
(p− l) · n
(c− l) · n with k ∈ R+

k =
‖c− l+ n((c− l) · n)‖

1 + (p−l)·n
(c−l)·n

(2)

where the positive scalar variable k is the scale between both triangles. With this scale known, we can express the point p,

starting from c, as

p(v,n) = c+ ((v − c) · n)n− c− l+ n((c− l) · n)
‖c− l+ n((c− l) · n)‖

‖c− l+ n((c− l) · n)‖
1 + (p−l)·n

(c−l)·n

= c+ ((v − c) · n)n− (c− l+ n((c− l) · n)) ((c− l) · n)
(c− l) · n+ (p− l) · n ,

(3)

which immediately yields Eq. (1).

2.2. Analytic Gradient

The Jacobian of p from Eq. (1) has the following analytic form

∂p(v,n)

∂n
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(
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n · (2v − c− l)

)T

+
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(
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(
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(4)

∂p(v,n)
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, (5)

With these Jacobians in hand, we can derive the gradient of the objective function in the minimization problem from Eq. (6)

from the main draft, which we list again for convienience

θ∗, φ∗, ν∗ = argmin
θ,φ,ν

F̃∑
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∥
∥
∥p
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∥
∥
∥

2

2
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Λ(θ,φ,ν)
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|Ψf |
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i∈Ψf

p
f
i (v,n),

(6)

where we introduce an objective function shortcut Λ for the objective itself. Recalling the normal and plane position

parametrization

n(θ, φ) =




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sin(θ) sin(φ)

cos(φ)


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



0
0
1



 , (7)

we derive the partials of Λ using the chain-rule as follows

∂Λ(θ, φ, ν)
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where the the partials for the average pf follow immediately from it’s definition Eq. (6), given Eq. (5) and Eq. (4). The

parameter gradients of the plane parametrization from Eq. (7) are
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The partials for Λ from Eq. (8) - (10) can be efficiently computed in vectorized form (before reduction in the sum), as the

Jacobian matrices are small 3× 3 matrices.

3. Specular ADMM Algorithm

In this section, we derive the Alternating Method of Multipliers Method (ADMM) [2] to solve Eq. (7) in the main document

which recovers specular reflectance from a set of N observations bi for i ∈ {1, . . . N} corresponding to virtual source

positions li, given the estimated homography mappings Hi as described in the main text. To make this document self-

contained, we list Eq. (7) again

argmin
x

−
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log
(

p(bi|WHi
K

β
Hi

x)
)

+ ΓTV (x)

subject to 0 ≤ x

(12)

which is a maximum a posteriori (MAP) estimation problem with a linear penalty and a Poissonian-Gaussian likelihood term
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(13)

This joint Poissonian-Gaussian likelihood consists of a Poissonian and Gaussian component calibrated according to Eq. (3)

from the main manuscript with Poissonian parameter κ and Gaussian parameter σ. Both are assumed to be independent of

each other and independent across all measurement pixels j which are indicated as superscripts. The linear forward operator

WHi
K

β
Hi

consists of the spatially varying convolution matrix K which blurs the specular reflectance based on the angular

falloff β and distance to the wall (encoded by the homography), and a subsequent warping matrix W which warps plane

coordinates to the image plane and resamples the blurred specular reflectance coefficients using bi-linear interpolation. We

assume a Gaussian specular lobe with standard deviation of 5° and precompute the convolution kernels for K
β
Hi

with a

limited support of 100 pixels. The warping matrix and convolution matrix are represented implicitly and used as matrix-free

functions in the solver implementation. For ease of notation, we denote

Ai := WHi
K

β
Hi

∀i ∈ {1, . . . N}. (14)

With these definitions, we follow [6] and define the negative log-likelihood of Eq. (13) as
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with χ(a, b) = a− b log(a) + IR+(a),

(15)

where IR+(a) is the indicator function for the positive orthant and the point-wise log-likelihood function χ is derived in [6].

Next, we follow [6] and reformulate Eq. (12) as the following objective
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where the auxiliary slack variables z allow to split the optimization over the coupled objective components g into a sequence

of optimization problems that can be solved efficiently. The matrices Dx and Dy are horizontal and vertical first-order

derivative matrices, respectively. Moreover, we resolve the total variation (TV) prior [3] as an anisotropic TV prior with

weight λ. To solve the reformulated optimization problem from Eq. (16), we use the linearized variant of ADMM [2] and

solve the spectral reflectance estimation problem as where the parameter τ is a scalar algorithm parameter that controls the

Algorithm 1 ADMM Algorithm for Planar Reflectance Estimation

1: for k = 1 to M

2: x = argmin 1
2 ‖Kx− z+ u‖22

3: zi=argmin − log (p (bi|zi)) + τ
2 ‖Aix+ ui − zi‖22 ∀i ∈ {1, . . . N}

4: zN+1=argmin IR+
(zN+1) +

τ
2 ‖x+ uN+1 − zN+1‖22

5: zN+2=argmin λ‖zN+2‖1 + τ
2 ‖x+ uN+2 − zN+2‖22

6: zN+3=argmin λ‖zN+3‖1 + τ
2 ‖x+ uN+3 − zN+3‖22

7: u=u+Kx− z

8: end for ,

algorithm stepsize. We set all algorithm hyper-parameters adopting the settins from [7]. The ADMM Alg. 1 minimizes the

Lagrangian of Eq. (16) in a coordinate descent approach, solving the objective for one of the (auxiliary) variables a the time,

while keeping all other variables fixed. We refer the reader to [12, 2] for additional details. In the following, we derive the

individual algorithm substeps for the optimization problems from line 2 to line 6.

3.1. Quadratic Subproblem in Algorithm 1

We solve the quadratic subproblem in line 2 of Alg. 1 using warm-started truncated conjugate gradient (CG). In contrast

to recent methods solving for albedo volumes [10, 8, 11], we recover a compact 2D slice on the previously estimated planar

object surface. We choose a resolution of 500 × 500 for the unknown ~x instead of the cubic resolutions required in for

these existing methods. This allows for an efficient matrix-free solves of this suproblem using three iterations of the CG

implementation from [7] with warm-start of x from the previous ADMM iteration. We have implemented the re-sampling

and spatially-varying convolutions of the operator A and AT using C++ code.

3.2. Poisson­Gaussian Subproblem in Algorithm 1

Introducing the free variable v for notational brevity, we follow [6] and formulate the subproblem in line 3 of Alg. 1 as

argmin
zi

g1(zi) +
τ

2
‖v − z1‖22 , (17)

which has the form of a proximal operator [12, 2] similar to the Poisson operator from [5]. Specifically, we derive

argmin
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τ
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τ

2
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1

2σ2
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+
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)

· ziopt −
σ2

τσ2 + 1
b = 0 s.t. ziopt ∈ R

+
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)

2
+
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√
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τσ2 + 1
bi +

(
σ2
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τσ2+1v − 1
τσ2+1bi

)2

4
,



which is a root-finding problem of a second-order polynomial. Due to the positivity constraint the minimum is uniquely

defined [5]. Finally, replacing the free variable v with the corresponding value for Aix + ui in line 4 of Alg. 1 yields the

concrete algorithm step.

3.3. Indicator Function Subproblem in Algorithm 1

The subproblem in line 4 of Alg. 1 also has the form of a proximal operator [12, 2]. Following [12] this algorithm step is

the projection operator defined for the free substitution variable v as

argmin
zN+1

IR+
(zN+1) +

τ

2
‖v − zN+1‖22 = ΠR+

(v) , (18)

where ΠR+ (·) is the element-wise projection operator onto the convex set R+, see [12]. Again, replacing the free variable v

with the corresponding value for x+ uN+2 in line 3 of Alg. 1 results in the specific algorithm step.

3.4. Total­Variation Step in Algorithm 1

The subproblem in line 5 and line 6 of Alg. 1 also have the form of a well-known proxoimal operator. Specifically, these

algorithms steps can be defined as the following Shrinkage operations [12] using the free substitution variable v

argmin
zN+2

λ‖zN+2‖1 +
τ

2
‖v − zN+2‖22 = max

(

1− τλ

|zN+2|
, 0

)

⊙ zN+2

argmin
zN+3

λ‖zN+3‖1 +
τ

2
‖v − zN+3‖22 = max

(

1− τλ

|zN+3|
, 0

)

⊙ zN+3

(19)

which implements an anisotropic Total Variation regularizer following [3, 12]. The specific algorithm updates follow from

replacing v with the corresponding iteration value for x+ uN+2 and x+ uN+3, respectively.

4. Synthetic Rendering Details

The success of deep learning relies heavily on the amount of training data. Learning NLOS imaging requires us to

provide thousands of indirect reflection maps together with their ground truth orthogonal projection on the wall area, which

we use as latent parametrization. Capturing such a dataset experimentally would be extremely challenging and requires

placing thousands of different objects in different locations and orientations, projecting different light beams and capturing

the corresponding ground truth image from the center of the wall. To avoid this immense experimental effort, we propose to

synthesize training images instead of capturing them.

Recently, synthesizing training data has been shown to be an efficient way to boost deep learning training. For example,

[13, 4] show that the models trained with synthetic data can perform as good as real data on the tasks of view estimation

or pose estimation. Moreover, ShapeNet[15] supplies thousands of 3D models for different categories, which covers almost

many common objects in real world. With such a rich 3D model dataset in hand, we can synthesize virtually infinite indirect

training variations for different shapes, textures and viewpoints.

However, our render task is very different from [13, 4]. While the approaches rely on direct illumination rendering using

by traditional OpenGL rendering pipeline, we have to generate indirect reflection measurements with third-bounce global

light transport for each measurement pixel. As shown in Sec. 3 of the main document, each pixel in the indirect reflection

map is the radiance integral over the hemisphere around this pixel. This integral can be handled by ray tracing, where one

simulates paths from the camera to the object. To sample this large space of paths, ray tracing requires us to calculate millions

of rays, which is computationally costly.

Render Pipeline With the goal of making synthesizing large training datasets of indirect observations feasible, we propose

the following render pipeline. As shown in Fig. 3, consider a pixel c on the image plane, which receives lights from potentially

all direction of the surface-hemisphere centered on this point, such as s1, s2 and many other directions on the hidden object.

The traditional OpenGL pipeline cannot handle such a case, since it assumes pixel receives light that comes from only one

direction.

To estimate this integral, we sample the incident radiance contributions at c on the hemisphere. Hence, we can render each

view direction using hardware-accelerated OpenGL in microseconds. Finally, accumulating all rendered images over the

hemisphere, weighted by the according diffuse wall BRDF, yields the resulting indirect reflection map. Our data generation





it decays 1e-5 every 3 epoches. Trained on a NVIDIA GTX 1080Ti GPU card, it will train 15 epoches in total and takes

around 10 hours to converge.

5.3. Additional Experimental Results for Learned Recovery Method

Fig. 11 and Fig . 12 show additional experimental results for various object classes. In the first two columns, we show

the top and side view of the hidden object. The third and fourth columns show captured indirect reflection measurements.

We show our reconstruction results in fifth column. The sixth column visualizes results obtained from the backprojection

method described in [14] (without filtering) applied on the steady-state measurement, i.e. without temporal information. The

last column shows the result of the total-variation-regularized linear inverse method from [8].

The reconstruction results validate that the proposed learned model, which is trained on synthetic data, successfully

generalizes to challenging NLOS recovery tasks on real captures. For large or sparse objects, such as the character cutout and

the chair or doll examples, we predict their reasonable shape. Note that the object surface of the character scenes is completely

diffuse, while the doll objects contain slight specular lobes. While these objects are well reconstructed, the reconstructions

for scenes with complicated geometry and reflectance suffer from artefacts, such as the car and chair examples. The method

matches the simulation results in these cases, and the predictions recover accurate position and only rough shape, sufficient to

localize the object. The compared backprojection and linear inverse method assume high temporal resolution measurements

and isotropic reflectance and hence fail in these scenarios.
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Figure 5. Example matches between a reference image and another image. We have cropped and normalized the captures to make the faint

indirect reflection better visible. While two erroneous matches are found, also three good matches are found for this challenging low-flux

feature matching process. Note that this particular sign did not exhibit significant specular blur, aiding the reconstruction and matching.

While some matches can be incorrect, note that the 5 × 5 sampling provides 24 potential image pairs for matching.



Figure 6. Additional experimental geometry and albedo reconstructions for the special case of planar objects, captured with the prototype

from Sec. 7 from the main draft. In the first row, we show reconstruction results for a retroreflective street sign which, although designed

to be retroreflective, contains faint specular components visible in the measurements. The second row visualizes results obtained from the

backprojection method described in [14] applied on the steady-state measurement, i.e. without temporal information. The last row shows

the result of the total-variation-regularized linear inverse method from [8].



Figure 7. Additional experimental geometry and albedo reconstructions for the special case of planar objects, captured with the prototype

from Sec. 7 from the main draft. In the first row, we show reconstruction results for an engineering grade street sign. The second row

visualizes results obtained from the backprojection method described in [14] applied on the steady-state measurement, i.e. without temporal

information. The last row shows the result of the total-variation-regularized linear inverse method from [8].



Figure 8. Additional experimental geometry and albedo reconstructions for the special case of planar objects, captured with the prototype

from Sec. 7 from the main draft. In the first row, we show reconstruction results for a diamond grade street sign which. The second

row visualizes results obtained from the backprojection method described in [14] applied on the steady-state measurement, i.e. without

temporal information. The last row shows the result of the total-variation-regularized linear inverse method from [8].



Figure 9. Additional experimental geometry and albedo reconstructions for the special case of planar objects, captured with the prototype

from Sec. 7 from the main draft. In the first row, we show reconstruction results for a conventional painted street sign. The second

row visualizes results obtained from the backprojection method described in [14] applied on the steady-state measurement, i.e. without

temporal information. The last row shows the result of the total-variation-regularized linear inverse method from [8].








