
Supplementary Material
Weakly-Supervised Discovery of Geometry-Aware Representation

for 3D Human Pose Estimation

Xipeng Chen∗1 Kwan-Yee Lin∗ 2,3 Wentao Liu3 Chen Qian3 Liang Lin1

1Sun Yat-Sen University 2Peking University 3SenseTime Research
1chenxp37@mail2.sysu.edu.cn 2linjunyi@pku.edu.cn

3{liuwentao,qianchen}@sensetime.com 4linliang@ieee.org

1. Introduction

This supplementary file presents: (1) the detail descrip-
tion of data augmentation strategies and network architec-
ture used in our approach; (2) additional experimental anal-
ysis and quantitative results of our approach; (3) more qual-
itative evaluations of the effectiveness of our approach.

2. Implementation Details

In this section, we provide more details regarding the
data augmentation strategies used in the training process,
the network architecture of generator(·, ·), and the fusion
mechanism used in the experiments for combining learnt
geometry representation G with baselines.
Data Augmentation. We apply two types of data aug-
mentation strategies to increase the diversity of the train-
ing samples. The first augmentation strategy is the random
in-plane rotations. Given a ground-truth 3D pose bgt and
two randomly sampled viewpoints(i, j) with its relative ro-
tation matrixRi→j , we rotate the 3D pose uniformly (±60◦)
around z axe under one of (i, j) camera coordinates to ob-
tain baug . Then the new 2D pose training pair (Siaug, S

j
aug)

with Ri→j are generated by projecting baug on perspec-
tive plane of cameras (i, j). The other data augmentation
is based on virtual cameras. Similar to [1, 5], we syn-
thesize the baug in virtual camera coordinate according to
ground-truth 3D pose bgt. Then, we project baug on cam-
era perspective plane to obtain 2D pose Saug . Concretely,
we assume all cameras roughly point towards a center posi-
tion Qcenter, which is the closest point to optical axes of all
cameras provided by training set. Qcenter is calculated by

Qcenter = argmin
Q

A∑
a=1

d(Q, la), (1)
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Encoders

Layer Module
1 Conv-(N15,K4,S2,P1)
2 LeaklyReLU, Conv-(N48,K4,S2,P1), BatchNorm
3 LeaklyReLU, Conv-(N96,K4,S2,P1), BatchNorm
4 LeaklyReLU, Conv-(N192,K4,S2,P1), BatchNorm
5 LeaklyReLU, Conv-(N384,K4,S2,P1), BatchNorm
6 LeaklyReLU, Conv-(N384,K4,S2,P1), BatchNorm
7 LeaklyReLU, Conv-(N384,K4,S2,P1)
8 Reshape(3,128,1)
9 Multiply with Relative Rotation Matrix

Decoders

1 Reshape(384,1,1)
2 ReLU, ConvT-(N384,K4,S2,P1), BatchNorm
3 ReLU, ConvT-(N384,K4,S2,P1), BatchNorm
4 ReLU, ConvT-(N192,K4,S2,P1), BatchNorm
5 ReLU, ConvT-(N96,K4,S2,P1), BatchNorm
6 ReLU, ConvT-(N48,K4,S2,P1), BatchNorm
7 ReLU, ConvT-(N15,K4,S2,P1), Tanh

Table 1: Network architecture of the generator(·, ·). Conv rep-
resents the Convolutional layer, N denotes the number of channels,
K denotes the kernel size, S denotes the stride size, and P denotes
the padding size. ConvT corresponds to a layer performing trans-
posed Convolution.

where la is the line indicates the optical axis, d is the dis-
tance between camera and Qcenter. We sample d from a
normal distribution with center and variance computed from
the training set. Different from [1, 5] that generate new 2D
coordinates-3D coordinates pair with sampling camera po-
sitions uniformly on a surface of a sphere, we synthesize 2D
pose pair Saug = {(Siaug, Sjaug)} by randomly sampling
two camera positions on the the torus with center Qcenter
and radius d.
Network Architecture. The generator(·, ·) consists of an
encoder and a decoder. The exact architecture is summa-
rized in Table 1. We train the overall model to learn G for
90 epochs using Adam optimizer. The initial learning rate
is 0.0001. The batch size is set to 64.
Fusion Mechanism. As mentioned in the main pa-
per, we use three 3D pose estimators, i.e., Regression#1,
Regression#2 and Regression#3, to evaluate the effective-
ness of the learnt geometry representation G to 3D hu-
man pose estimation task. For Regression#1, the regres-



(a) Ours+Regression#1

(b) Ours+Regression#2

(c) Ours+Regression#3
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Figure 1: The illustration of fusing the representation G
with the original features of baselines (zoom in for more
details).

sion module is a two-layer fully-connected network. For
the rest two regressors, in order to evaluate the robustness
and flexibility of the proposed geometry representation in a
straightforward manner, we only forward the geometry rep-
resentationG to fully connection layers to match the feature
dimension of baselines, and then directly do element-wise
sum with baselines [2, 4]. Baselines are trained with their
public implementations and default settings. Figure 1 shows
the detail positions of the fusion operation.

3. Additional Experimental Results

Results on Human3.6M under different amount of
training samples. Besides the results analysed in the main
paper, we also evaluate the effectiveness of the learnt rep-
resentation G as a robust 3D prior to different 3D human
pose estimation methods, on the condition of using the dif-
ferent amount of 3D annotated samples (under Protocol#1)
to train the 3D pose estimators. As can be seen from Fig-
ure 2, our approach yields a consistent improvement over
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Figure 2: Evaluation on the Human3.6M using different number
of training data under MPJPE metric.

the baselines [2, 4] for all configurations. Specifically,
given only about 500 annotated training samples (1%S1),
the proposed G help reduce the errors for baseline#2 and
baseline#3 by 8.3% (101.5mm → 93.1mm) and 13.6%
(118.8mm → 102.7mm), respectively. Under the amount
of 25000(50%S1) training samples, G boosts the base-
line#2 to achieve better performance than single baseline#2
on larger amount of data (49000(100%S1)samples), with
particularly 2.5mm gains. For baseline#3, G help the
model achieving 4.8mm gains with half training samples
of S1. Table 2 reports the results of same configurations
under PMPJPE metric, yielding similar observation. These
phenomena confirm the flexibility and effectiveness of the
proposed G to existing 3D human pose estimation meth-
ods, with improving the performance of these methods on
less annotated training samples requisition.

Ablation Study. To assess the effectiveness of the key com-
ponents of our approach to different 3D human pose estima-
tors, except the ablation study results reported in the main
paper, we also evaluate ablation studies on the configura-
tions of Regression#1 and Regression#2. We clarify
here that the baseline of “Ours+Reg#1” presents the per-
formances of directly regressing 3D pose coordinates from



Number of Training Data Baseline#2 Ours+Reg#2 Baseline#3 Ours + Reg#3
496 (1%S1) 74.4 69.7 105.3 90.4
2.5k (5%S1) 62.3 60.5 82.6 69.3
5k (10%S1) 60 57.7 78.0 65.0
25k (50%S1) 57.5 55.5 73.6 62.4

49k (S1) 56.4 54.8 69.2 58.6
129k (S1+S5) 51.1 50.2 58.2 55.3

179k (S1+S5+S6) 49 47.6 55.6 50.2
312k (all) 47.7 44.1 44.1 41.6

Table 2: Evaluation on the Human3.6M using different number
of training data under PMPJPE metric.

2D detections1 with the same regressor (Regression#1). Ta-
ble 3 presents the results for the two configurations. The
level of relative improvements is varying on the configu-
rations due to the effect of different network architectures
and plain vanilla fusion mechanism on passing the valid in-
formation of our components to baselines. However, the
tendencies are coherent. These ablation studies provide ad-
ditional evidence that the key components of the proposed
model are useful to the methods that injecting them and in-
deed robust to different configurations.

Components Ours + Reg#1 Ours + Reg#2
MPJPE 4(%) MPJPE 4(%)

BL 114.7 - 61.2 -
BL+SG 86.3 24.8↓ 57.6 6.3↓

BL+SG+AUG 85.3 1.1↓ 57.5 0.18↓
BL+DG+AUG 80.2 6.0↓ 56.9 1↓

Table 3: Ablation studies on different components in our method
with other baselines. The evaluation is performed on Human3.6M
under Protocol#1 with MPJPE metric. 4 is the relative error de-
crease.

4. Qualitative Evaluations
In this section, we show additional point cloud (i.e., the

manifold) interpolation to verify the robustness and 3D ge-
ometry semantics of the proposed representation G.

We show samples from the manifold, decoding them into
2D skeleton on the target domain and regressing them to 3D
human pose with ‘Ours+Regression#1’. Concretely, we
randomly take two 2D poses (S1

j and S2
j ) under same cam-

era viewpoint, encoding their corresponding source poses
S1
i and S2

i to obtain latent samples G1 and G2. Then,
the linear interpolation is applied between these two latent
samples to obtain interpolated latent samples Gλ : Gλ =
λG1+(1−λ)G2. We subsequently decode the Gλ into 2D
skeleton and regress Gλ to 3D human pose, resulting in a
triplet. For a straightforward visual perception, please refer
to supplemental video to see the interpolation results. Note
that, the 2D poses in the first and last frames are S1

j and
S2
j . The rest results on the video are synthesized results.

As can be seen from the video, the results are consistent
1The 2D detections are obtained from a pre-trained 2D human pose

estimator [3].

amongst 2D skeleton and 3D poses under the changing of
latent samples. This shows the proposed representation G
has extracted semantic 3D geometry representation of the
human pose. Moreover, the smooth interpolation results
show that a reasonable coverage of the manifold has been
successfully learned by our model, yielding a robust geom-
etry representation to diverse poses.
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