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1. Proof of Proposition

Proposition 1. Given a closed convex set X , a ray starting from any interior point of X will intersect with the boundary of

X once.

Proof. First, it is straightforward that a ray starting from any interior point of X will intersect with its boundary since

otherwise X is not closed. Then we prove the intersection can only happen once by contradiction. We assume a ray starts

from an interior point a and intersects with the boundary of X twice at b and c. Without loss of generality, we assume b is

in between a and c. Since a is an interior point, we can find an open ball A which centers at a and A ∈ X . Given any point

ã ∈ A other than a, we can uniquely determine a line l which crosses ã and c. Then we can uniquely draw an open ball B

which centers at b and has l as the tangent line. Since b is a boundary point of X , we can always find a point b̃ ∈ B such that

b̃ 6∈ X . Connecting c and b̃, we can uniquely determine a line l̃. Since |∠ãcb| ≥ |∠b̃cb|, line l̃ will intersect with A for at

least once. Denoting any intersection point as â, we know â ∈ A ∈ X . Since c ∈ X , we know any point in between c and â,

i.e., the convex combination of c and â, should be in X due to the fact that X is convex. Therefore, b̃ ∈ X which contradicts.

We show the schematic of proof in Fig. 1.

Figure 1: Illustration of proof.



2. Contour Inference Details

Our contour inference relies on the following equation,

ρ(t+1) = ρ(t) −∆t (Aρ(t) + f) (1)

where ρ(t) represents the contour at step t, ∆t is a time step hyper-parameter for solving the system, A and f consist of

partial derivatives of the energy w.r.t. ρ(t). Here, we detail the construction of this equation.

Matrix equation As mentioned in our paper, the relevant partial derivatives are as follows. For the data term,

∂Edata(c)

∂ρi
=

∂D(ci)

∂x
cos(i∆θ) +

∂D(ci)

∂y
sin(i∆θ) (2)

where

ci =

[

xc + ρi cos(i∆θ)
yc + ρi sin(i∆θ)

]

(3)

For the curvature term,

∂Ecurve(c)

∂ρi
≈ [2β(ci+1) cos(2∆θ)]ρi+2+

[−4(β(ci+1) + β(ci−1)) cos(∆θ)]ρi+1+

2[β(ci+1) + 4β(ci) + β(ci−1)]ρi+

[−4(β(ci) + β(ci−1)) cos(∆θ)]ρi−1+

[2β(ci−1) cos(2∆θ)]ρi−2

(4)

For the balloon term,

∂Eballoon(c)

∂ρi
≈ −

κ(ci)

ρmax

(5)

Combining these into the overall energy, we obtain

∂E

∂ρi
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[−4(β(ci+1) + β(ci−1)) cos(∆θ)]ρi+1+

2[β(ci+1) + 4β(ci) + β(ci−1)]ρi+

[−4(β(ci) + β(ci−1)) cos(∆θ)]ρi−1+

[2β(ci−1) cos(2∆θ)]ρi−2+

∂D(ci)

∂x
cos(i∆θ) +

∂D(ci)

∂y
sin(i∆θ)−

κ(ci)

ρmax

(6)

We have L such equations, one for each ρi. In each equation, there are dependencies on the four adjacent entries of ρi, and

ρi itself (i.e. for entries on the borders, the indices wrap around). This summarizes into matrix form,
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= Aρ+ f (8)



where

ai = 2β(ci+1) cos(2∆θ) (9)

bi = −4(β(ci+1) + β(ci−1)) cos(∆θ) (10)

ci = 2(β(ci+1) + 4β(ci) + β(ci−1)) (11)

di = −4(β(ci) + β(ci−1)) cos(∆θ) (12)

ei = 2β(ci−1) cos(2∆θ) (13)

fi =
∂D(ci)

∂x
cos(i∆θ) +

∂D(ci)

∂y
sin(i∆θ)−

κ(ci)

ρmax

(14)

Solving the system As mentioned in [2], to iteratively minimize the energy, we can solve this system of equations by

introducing a time variable such that the solution is found at equilibrium. That is,

ρ(t+1) − ρ(t)

∆t
= −(Aρ+ f) (15)

where we purposefully leave out the time indices on the right hand side of the equation. [2] then adopts an implicit-explicit

method by interpreting A implicitly (so it is associated with ρ(t+1)) and f explicitly (so it is associated with ρ(t)),

ρ(t+1) − ρ(t)

∆t
= −(Aρ(t+1) + f) (16)

ρ(t+1) =

(

A+
1

∆t
I

)

−1 (
1

∆t
ρ(t) − f

)

(17)

To avoid the need to perform a batched matrix inverse, we instead adopt an explicit method,

ρ(t+1) − ρ(t)

∆t
= −(Aρ(t) + f) (18)

ρ(t+1) = ρ(t) −∆t(Aρ(t) + f) (19)

3. CNN Architecture

Our CNN backbone Our CNN backbone uses Dilated Residual Network [5], specifically DRN-D-22 with its last pooling

and fully-connected layers removed, as the main method of feature extraction. We append additional upsampling layers to

yield output maps that match the input image size. This is illustrated in Figure 2.

Adaptation to Deep Structured Active Contours (DSAC) To implement DSAC [4], we leverage the same architecture in

Figure 2, except with 4 outputs corresponding to the energy maps required in that framework. Following the implementation

of DSAC, we add a gaussian smoothing layer with kernel size 9 and σ = 2 to the final output of the data term.

4. Hyper-parameters

We train our network using SGD with momentum. We choose a learning rate of 4× 10−5, which halves every E epochs,

momentum of 0.3, a weight decay of 1 × 10−5, and a batch size of 10. We set E = 30 for Vaihingen and Bing Huts, and

E = 1 for TorontoCity. We train for 100 epochs on Vaihingen and Bing Huts, and 10 epochs on TorontoCity.

To encourage stability in contour inference without using common techniques that are non-differentiable, we pretrain the

maps to output values that cause the contour to converge, although not necessarily close to the ground truth rays. Specifically,

we leverage the Euclidean distance transform because it possesses some desirable properties. Recall that we wish for D

to assign relatively lower values to the building boundaries, such that its gradient near these boundaries can attract contour

points towards it. Both of these properties are reflected in the distance transform. For β, we adopt the distance transform

with the building interiors masked out; we wish for contour points to evolve outwards without restriction, and straighten out

as it approaches the boundaries. For κ, we adopt the distance transform with the building exteriors masked out. To pretrain,

we take the predictions pr 0 and pr 1 (from Figure 2) and regress to these distance transforms with a smooth L1 loss, using

Adam [3] with an initial learning rate of 1 × 10−3, which halves every E epochs, and weight decay of 4 × 10−4. We set



Figure 2: CNN architecture. Convolutions shown in blue; transposed convolutions shown in orange. Layers are annotated as

kernel size/stride/output channels. Dilation is set to 1 unless stated otherwise. Output sizes are listed as a scale factor from

the original input image. All residual blocks are combinations of Convolution-BatchNorm-ReLU in the style of [5], except

for pr 0 and pr 1, where BatchNorm [1] is not used.

E = 50 for Vaihingen and Bing Huts, and E = 3 for TorontoCity. We pretrain for 250 epochs on Vaihingen and Bing Huts,

and 10 epochs on TorontoCity. After pretraining, we scale the β and κ maps by 0.005 and 0.1 respectively so that, during the

initial stages of training, the contours do not move too far. We found this procedure increases the stability of training.

5. More Visual Examples

We show more examples in Figures 3, 4, 5, and 6.
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Figure 3: Results on (a-b) Vaihingen, (c-d) Bing Huts, (e-f) TorontoCity. Bottom three rows highlight failure cases. Original

image shown in left. On right, our output is shown in cyan; DSAC output in yellow; ground truth is shaded.
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Figure 4: Results on (a-b) Vaihingen, (c-d) Bing Huts, (e-f) TorontoCity. Bottom three rows highlight failure cases. Original

image shown in left. On right, our output is shown in cyan; DSAC output in yellow; ground truth is shaded.
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Figure 5: Results on (a-b) Vaihingen, (c-d) Bing Huts, (e-f) TorontoCity. Bottom three rows highlight failure cases. Original

image shown in left. On right, our output is shown in cyan; DSAC output in yellow; ground truth is shaded.



Figure 6: Demonstration of our method (segmentations shown in shaded color) on a large area of the TorontoCity dataset.


