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Abstract

In this supplementary material, we provide our detailed
network structure, qualitative comparison of hard and soft
slanted plane constraint, qualitative and quantitative com-
parison to stereo matching algorithms and qualitative re-
sults on the Synthia dataset.

1. Detailed Network Structure

The core architecture of our LidarStereoNet contains
three blocks: 1) Feature extraction and fusion; 2) Feature
matching, and 3) Disparity computing. We provide the de-
tailed structure of the feature extraction and fusion block in
Table 1. The feature matching block and disparity comput-
ing block share the same structures with PSMnet [1].

2. Hard versus Soft Plane Fitting

There are two kinds of plane fitting constraints. Conven-
tional CRF based methods use one slanted plane model to
describe all disparities in one segment, i.e., disparities in-
sides one segment exactly obeys one slanted plane model.
We term it as “Hard” plane fitting constraint. Our method,
on the other hand, only applies this term as part of the whole
optimization target. In other words, we only require the re-
covered disparities to fit a plane in a segment if possible but
it can still be balanced by other loss terms.

Fig. 1 illustrates the difference between our soft con-
straint and the CRF-style hard constraint in a recovered dis-
parity map. As can be seen in Fig. 1, strictly applying the
slanted plane model in recovered disparity map decreases its
performance from 3.27% to 3.97% and it is very sensitive to
segments as well. By switching segments from Stereo SLIC
to SLIC, its performance further decreases from 3.97% to
4.52%.

∗These authors contributed equally in this work.

Table 1. Feature extraction and fusion block architecture, where
k, s, chns represent the kernel size, stride and the number of the
input and the output channels. We use “+” to represent feature
concatenation.

Lidar feature extraction
layer k , s chns input

conv s1 11×11, 1 1/16 disparity
conv s2 7×7, 2 16/16 conv s1
conv s3 5×5, 1 16/16 conv s2
conv s4 3×3, 2 16/16 conv s3
conv s5 3×3, 1 16/16 conv s4

conv mask 1×1, 1 17/16 conv s5+mask
Stereo feature extraction

layer k , s chns input
conv0 1 3×3, 2 3/32 image
conv0 2 3×3, 1 32/32 conv0 1
conv0 3 3×3, 1 32/32 conv0 2

conv1 n
[

3×3, 1
3×3, 1

]
×3 32/32 conv0 3

conv2 1
[

3×3, 2
3×3, 1

] [
32/64
64/64

]
conv1 3

conv2 n
[

3×3, 1
3×3, 1

]
×15 64/64 conv2 1

conv3 1
[

3×3, 1
3×3, 1

] [
64/128

128/128

]
conv2 16

conv3 n
[

3×3, 1
3×3, 1

]
×2 128/128 conv3 1

conv4 n
[

3×3, 1
3×3, 1

]
×3 128/128 conv3 3

branch1 64×64, 64 128/32 conv4 3
branch2 32×32, 32 128/32 conv4 3
branch3 64×16, 16 128/32 conv4 3
branch4 8×8, 8 128/32 conv4 3

lastconv
[

3×3, 1
1×1, 1

] [
320/128
128/32

] conv2 16+conv4 3
+branch1+branch2
+branch3+branch4

Feature fusion
lastconv + conv mask
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Figure 1. Comparison of soft and hard constraints on slanted plane model with different superpixel segmentation methods. Note
that our recovered disparity map has more aligned boundaries with the color image.

Sparse disparity SPS-ST [6] S2D [2] SINet [4] Ours
Figure 2. Qualitative results on the Synthia dataset. The first raw is the colorized disparity results, and the second row is the correspond-
ing error maps.

3. Comparisons with STOA stereo matching
methods

For the sake of completeness, we provide qualitative and
quantitative comparisons with state-of-the-art stereo match-
ing methods. We choose SPS-ST [6], MC-CNN[5], PSM-
net [1] and SsSMnet[7] for reference. Note that the SPS-ST
method is a traditional (non-deep) method, and its meta-
parameters were tuned on KITTI dataset. For deep MC-
CNN we used a model which was firstly trained on Middle-
bury dataset and for PSMnet we used the model that was
trained on SceneFlow [3] dataset and the model (“-ft”) that
we fine-tuned on KITTI VO dataset. We also compared our
method with state-of-the-art self-supervised stereo match-

ing network SsSMnet [7].

4. Qualitative results on Synthia dataset
In Fig. 2, we show qualitative comparison results on Syn-

thia dataset. Our method achieves the lowest bad pixel ratio.
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Table 2. Quantitative comparison on the selected KITTI 141 subset. We compare our LidarStereoNet with various state-of-the-art
stereo matching methods, where our proposed method outperforms all the competing methods with a wide margin.

Methods Input Supervised Abs Rel > 2 px > 3 px > 5 px δ < 1.25 Density

MC-CNN [5] Stereo Yes 0.0798 0.1070 0.0809 0.0555 0.9472 100.00%
PSMnet [1] Stereo Yes 0.0807 0.2480 0.1460 0.0639 0.9399 100.00%
PSMnet-ft [1] Stereo Yes 0.0609 0.0635 0.0410 0.0277 0.9689 100.00%
SPS-ST [6] Stereo No 0.0633 0.0702 0.0413 0.0265 0.9660 100.00%
SsSMnet [7] Stereo No 0.0619 0.0743 0.0498 0.0334 0.9633 100.00%

Our method Stereo No 0.0572 0.0540 0.0345 0.0220 0.9731 100.00%
Our method Stereo + Lidar No 0.0350 0.0287 0.0198 0.0126 0.9872 100.00%

(a) Input image (b) Input lidar disparity (c) Ground truth (d) Ours

(e)SPS-ST [6] (f) SsSMNet [7] (g) MC-CNN [5] (h) PSMnet [1]
Figure 3. Qualitative results of the methods from Table 2. Our method is trained on KITTI VO dataset and tested on the selected unseen
KITTI 141 subset without any finetuning.
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