
Supplementary Material

A. Implementation Details
In this section, we first describe the architectures of each

network component in our proposed model, followed by de-
tails of the training and fine-tuning processes. Finally, we
present a table to summarize our hyperparameters.

A.1. Model Architecture

For clarification, while our proposed model contains all
five components detailed below, the baseline models only
contain the feature extractor fe and the classifier fc. We
also describe the difference in the two model variants: one
with the fully connected classifier and the other with the
cosine similarity classifier, which we denote as FC and CS,
respectively.

Feature extractor fe. (Fig. 1) The feature extractor fe is
implemented with a Conv-4 structure, which takes either the
entire image x (the baseline settings) or a patch pi (our pro-
posed model) as input and produces the feature embedding
(e or ei, respectively). Each convolutional block consists
of the Conv-BN-ReLU-MaxPool structure, with the con-
volutional layer having a 64 channel output and the pool-
ing layer with a 2 × 2 max-pooling operation. We utilize
“same” padding technique for the max-pooling layers. Four
of these convolutional blocks are stacked together to form
the Conv-4 backbone. For the CS variants, we removed the
ReLU operation in the final convolution block leaving only
the Conv, BN, and the MaxPool layer.

Action context encoder fa. (Fig. 2) The action context
encoder fa takes the global context g (i.e., features pro-
duced by the policies πθ) and the action ai, producing an
action context vector ci. ai is first encoded with a fully con-
nected layer without any activation functions, then is multi-
plied with g and passed through a ReLU activation. Finally,
a fully connected layer with a ReLU activation is used to
produce ci. For the CS variants, we removed the ReLU op-
eration in the final fully connected layer.

State encoder fs. The state encoder fs is implemented
with a GRU and takes the previous state si−1 and the con-
catenation of both ei and ci−1 as input, producing the cur-

rent state si. For the CS variants, we remove the tanh non-
linearity before the output.

Maximum entropy sampler fQ and πθ. (Fig. 3 and Fig.
4) fQ and πθ has an identical architecture, except for mi-
nor difference in the input and output. We experimented
with both Leaky ReLUs and ReLUs but observed no signif-
icant difference. Here we report what we used in our final
implementation. Note that while the positive and negative
policy have different weights, they share the same network
architecture.
fQ takes the image x, the state sj , and the action aj as

input. Note that the fQ is not used during the feed-forward
pass. The inputs are sampled from stored transitions stored
in the replay buffer during training (backprop). The image x
is encoded with 3 convolutional layers consisting of 64, 64,
and 1 output channels, followed by a fully connected layer.
The state sj is encoded with two fully connected layers. The
action aj is also encoded with two fully connected layers.
Leaky ReLUs are used as an activation function for all the
layers except for the final fully connected layers in each sub-
module mentioned above. The three embeddings are added
together, followed by a ReLU activation and is fed to a final
connected layer without any activations to produce the final
Q-value for the given state-action pair.
πθ takes the image x, the state si, and a noise vector

ni as input. x and si are encoded in the same way as in
fQ. Instead of the action ai, we now encode ni with two
fully connected layers. Like in fQ, Leaky ReLUs are used
as an activation function for all the layers except for the fi-
nal fully connected layers in each sub-module. The three
embeddings are added together, followed by a ReLU acti-
vation, producing an aggregated feature g. This feature g
is fed into fa to provide some global context. Finally, g is
also fed into a final connected layer with a tanh activation
to produce a 2D vector ranging from −1 to +1, which cor-
responds to the action ai.

Classifier fc. The classier fc takes the features of the
whole image e (the baseline settings) or the final state sN
(our proposed model) as input and predicts a label for the
input image x.

For the FC variant, fc is a fully-connected layer with



Figure 1: Schematic diagram for the feature extractor fe that shares the same architecture among all models. For the CS
variant, the ReLU activation in the final block is removed leaving only Conv, BN, and MaxPool layer.

Figure 2: Schematic diagram for the action context encoder
fa. The two numbers (X1/X2) proceeding the FC layers
indicate the number of output neurons for Omniglot (X1)
and miniImagenet (X2), respectively. For the CS variant,
the final ReLU activation is removed.

the number of output logits equal to the number of classes
present followed by a softmax activation. For the CS vari-
ant, fc is a cosine similarity layer. The output is then mul-
tiplied by a learnable scaling factor k before being fed into
the softmax activation, that is:

ŷi =
exp(kwTi sN )∑
exp(kwTi sN )

, (1)

where sN is the normalized final state vector, i.e., normal-
ized input, and wi is the normalized columns of the weight
matrix.

A.2. Training and Fine-tuning

For training and fine-tuning, we use separate classifiers,
i.e., fc1 and fc2, as the number of classes are different.
When we fine-tune on the novel classes, the weights of
all other components are frozen and we only update the
weights in the “novel” classifier fc2. We used the Huber
loss to update fQ.

Figure 3: Schematic diagram for the Q-function fQ. The
two numbers (X1/X2) proceeding the FC layers indicate the
number of output neurons for Omniglot (X1) and miniIma-
genet (X2), respectively. We use the subscript j to indicate
that the inputs are sampled from stored transitions instead
of the current feed-froward pass.

We train our baseline models with a learning rate of 10−3

via the ADAM optimizer. For our proposed model, we
found that pre-training with a lower learning rate of 10−4

via the ADAM optimizer is more stable. During fine-tuning,
we modified the learning rate to 10−3 and fine-tune on the
“novel” classifier fc2.

A list of the hyperparameters we used for training our
proposed model can be seen in Table 1, Table 2, and Table 3.

B. Additional Ablation Studies
Due to the limited space in the main paper, here we

present the results of additional ablation studies. We per-



Figure 4: Schematic diagram for the policy πθ. Note that
the two policies π+ and π− share the same architecture but
have separate weights. The two numbers (X/Y) proceed-
ing the FC layers indicate the number of output neurons for
Omniglot and miniImagenet, respectively.

Table 1: Input and output dimensions for the Omniglot and
miniImagenet dataset. Here we list the dimensions of the
inputs (denoted as [I]) and outputs (denoted as [O]) in our
modules for clarity. Note that the input image x size in
miniImagenet is 64 × 64 (instead of 84 × 84) after per-
forming standard data augmentation techniques (i.e., ran-
dom cropping). B denotes the batch size.

Omniglot miniImagenet
(20-way) (5-way)

fe
pi [I]
ei [O]

B × 16× 16× 1
B × 64

B × 24× 24× 3
B × 256

fa

ai [I]
g [I]
ci [O]

B × 2
B × 64
B × 64

B × 2
B × 256
B × 256

fs

ei [I]
ci−1 [I]
si−1 [I]
si [O]

B × 64
B × 64
B × 128
B × 128

B × 256
B × 256
B × 512
B × 512

fQ

x [I]
sj [I]
aj [I]

Q(s, a) [O]

B × 28× 28× 1
B × 128
B × 2
B × 1

B × 64× 64× 3
B × 512
B × 2
B × 1

πθ

x [I]
si [I]
ni [I]
ai [O]

B × 28× 28× 1
B × 128
B × 2
B × 2

B × 64× 64× 3
B × 512
B × 2
B × 2

fc1
sN [I]
ŷ [O]

B × 128
B × (4800 + 1)

B × 512
B × (64 + 1)

fc2
sN [I]
ŷ [O]

B × 128
B × (20 + 1)

B × 512
B × (5 + 1)

form inference with the soft voting scheme, which has been
shown in the main text to be favorable over the hard vot-
ing scheme. For completeness, we include the results for
N = 1, 3, 5, 7 votes.

Table 2: Hyperparameters for training the model. For the
two final hyperparameters, the two numbers indicate the
chosen hyperparameter value for the Omniglot and mini-
Imagenet dataset, respectively.

Batch size B 16
Number of Patches N 4

Learning Rate (training) 1× e−4

Learning Rate (finetuning) 1× e−3

Lclass Weighting 1
4800/

1
64

Prob. of Selecting π+ (β) 0.9/0.1

Table 3: Hyperparameters for performing Soft Q-Learning.

Replay Buffer Size 100000
Discount Factor γ 0.99

Value Samples 16
Kernel Samples 32

Fixed Kernel Sample Ratio 0.5
Entropy Objective Weighting α 1.0

B.1. Impact of Negative Sampling Policy π−
Here we compare the performance of the model with

and without jointly using the positive and negative sam-
pling policies in Fig. 5 and Fig. 6. Note that the reward
function is not augmented with the Ri = −1 case as the
negative sampling policy π− does not exist. We see that the
incorporation of the negative policy can lead to improve-
ments: nearly 1% in the 1-shot setting for the CS classifier
and nearly 0.5% in the 5-shot setting for the FC classifier.
For the remaining two settings, we observe a difference no
bigger than 0.2% and we attribute this to different random
seeds.

B.2. Impact of Augmented Reward Function

Here we compare the performance of the model with and
without the augmented reward function (i.e., with and with-
out the Ri = −1 case). Without the reward augmentation,
we assign a reward value of 0 for a “background” predic-
tion.

Without the reward augmentation, receiving a “back-
ground” label is as “bad” as receiving an incorrect classi-
fied label for the positive policy π+, and vice versa for the
negative policy π−. Note that there is a potential issue with
this formulation: if the encoder and classifier are not well
trained to extract promising features and perform classifi-
cation (i.e., classifier is unable to reach 100% accuracy),
the positive policy π+ could be sampling at the locations
of interest and still result in a misclassification. However,
to the sampler, this is an equally rewarding situation (re-
sulting in a reward of 0) compared with the situation when



(a) FC Classifier (b) CS classifier

Figure 5: Performance with and without joint policies on miniImagenet for (a) FC and (b) CS variants for 1-shot settings.
We observe a noticeable improvement (nearly 1%) for the CS variant with 7 votes.

(a) FC Classifier (b) CS classifier

Figure 6: Performance with and without joint policies on miniImagenet for (a) FC and (b) CS variants for 5-shot settings.
We notice a slight improvement (around 0.5%) for the FC variant with 7 votes.

(a) FC Classifier (b) CS classifier

Figure 7: Performance with and without an augmented reward function on miniImagenet for (a) FC and (b) CS variants
for 1-shot settings. We observe no major differences for the 1-shot settings (within 0.2%).

(a) FC Classifier (b) CS classifier

Figure 8: Performance with and without an augmented reward function on miniImagenet for (a) FC and (b) CS variants
for 5-shot settings. We observe a noticeable improvement for both classifiers (around 0.8%) with 7 votes.



the sampler samples at the “irrelevant” locations (leading to
a ”background” prediction). This could in turn confuse the
maximum entropy sampler, which motivates us to introduce
an augmented reward function to address such an issue.

To be specific, the three reward terms now corresponds
to these scenarios: 1) Reward +1: “Relevant” patches, cor-
rect classification. 2) Reward 0: Misclassification. 3) Re-
ward −1: “Irrelevant” patches, “background” classification.
Note how the introduction of the third term helps avoid the
aforementioned ambiguity by accounting for the imperfec-
tion of the encoder and classifier. The augmented reward
function also complies with the intention of the policies. For
the positive policy π+, it is preferable to sample at the “rel-
evant” patches that leads to the correct classification, less
preferable to sample at the patches that leads to a misclassi-
fication, and the “irrelevant” patches that leads to a “back-
ground” classification should be avoided. For the negative
π−, this order of preference is inverted.

We plot the results in Fig. 7 and Fig. 8. We observed that
the augmented reward function provides an improvement
of around 0.8% for both classifiers in the 5-shot setting. For
the 1-shot setting, we see differences no bigger than 0.2%
and we attribute this to different random seeds.

C. Additional Sampling Trajectories
Due to the spaces limitation in main paper, here we

present more sampling trajectory visualizations produced
by our sampling policy on miniImagenet for the input im-
ages from base classes (Fig. 9) and from novel classes (Fig.
10). Note that the samplers were not fine-tuned on the novel
classes. The order of the sampled patches is: blue, green,
red, and white, indicated by the color of the frames. At
first glance, we can see that the sampling policy learns to
sample on the regions of interest and may also sometimes
choose to sample on background patches. We would like
to clarify that this is, in fact, the intended behavior, and is
the results of our main objective function, where we aim to
maximize the action variety of the sampling policy.



Figure 9: Sample trajectories for different input images from base classes in miniImagenet. We use the same input image
and run multiple feed-forward passes to extract the different sampling trajectories.

Figure 10: Sample trajectories for different input images from novel classes in miniImagenet. We use the same input image
and run multiple feed-forward passes to extract the different sampling trajectories. Note that the sampling policy must be
able to generalize to unknown classes as the samplers are not fine-tuned on the novel classes.


