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1. Object Sentiment Classification
Sentiment classification is an important part of the pro-

posed Emotion-Aware Saliency model (EASal). In the de-
sign of the object sentiment classifier, we collected the posi-
tive and negative emotion-evoking, and emotionally neutral
objects from EMOtional attention Dataset (EMOd) [4] and
COCO attributes [11] dataset based on their object-level at-
tributes. EMOd is a human attention dataset focusing on
emotional images. The objects in EMOd have sentiment
labels (either positive, negative, or neutral). The COCO at-
tribute dataset (COCO attributes) provides 169 object-level
visual attributes.

1.1. Data preparation

We selected a set of COCO attributes that are strongly
related to positive and negative sentiments and transformed
them to positive and negative sentiment labels (see Table
1, second column). The rest of the COCO attributes are
transformed to neutral sentiment labels. Since each object
in COCO attributes has more than one labels, the dominant
sentiment label was used as the final sentiment label of this
object. In rare cases where the number of positive senti-
ment label equals the number of negative sentiment label, a
neutral label was assigned as the final sentiment label. We
classified attributes showing mild expressions into neutral
sentiment labels, as initial tests show that using the annota-
tions which strongly express emotion only, rather than in-
cluding attributes showing mild expression, provides more
desirable results in sentiment classification.

Fig. 1 shows some examples on how object labels in the
COCO attributes dataset are transformed into object senti-
ment label. As shown in Fig. 1, attributes such as unhappy
in the top-left right image is transformed to negative label
and is used as the sentiment label for the object. For the top
right image, the joyful and smiling are transformed to pos-
itive label. In total, 3828 objects were collected, 3009 of
which were used in the training set and the rest were used
for the validation set (see Table 2 for the summary). We
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Table 1: COCO attributes dataset provides a set of attributes
that relate to emotions. We classify those strongly express-
ing emotions (second column) into positive and negative ob-
ject sentiment labels, respectively.

Emotion strong expression mild expression
Related to
positive
emotion

happy, smiling, en-
joying, laughing,
celebrating, joyful,
excited, cute/adorable

clean, peaceful,
young, calm, warm,
fresh, strong, ele-
gant

Related to
negative
emotion

unhappy, angry, scared,
sad, annoyed

bored, anxious, dull,
confused, dirty, dan-
gerous, lazy, old

  

watching / 
looking, 
participating, 
unhappy, adult, 
male, cloth, 
family-friendly 
(negative)

Sitting, watching / 
looking, smiling, 
enjoying, holding, 
happy, friendly, 
young, joyful, 
casual, cloth, 
family-friendly 
(positive)

Standing, 
spectating, bulky, 
sad, anxious, 
confused 
(negative)

Laying, sleeping, 
comfortable / cozy, 
cute/adorable, 
fluffy,peaceful,horiz
ontal,tame 
(positive)

Moving, traveling, 
carrying, useful, 
metal / metallic, 
functional, public, 
commercial, family-
friendly (neutral)

Standing, watching / 
looking, holding, 
spectating, dry, 
urban, busy, open, 
adult, clean, male, 
vertical, cloth, 
public, family-
friendly (neutral)

Figure 1: Example images of how we classified attributes
in COCO attributes dataset into either positive, negative, or
neutral sentiment label.

performed oversampling on the training set using flipping,
shifting and cropping in four different directions, resulting
in 15045 training samples.

1.2. DNN Architecture and Training

We considered six deep learning architectures to perform
the emotion classification which include the CaffeNet [8],
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Figure 2: Sample objects labeled by the sentiment classifier as positive-evoking objects (left), negative-evoking objects
(middle) and neutral objects (right).

Table 2: Number of extracted objects from the training set
used for fine-tuning the sentiment classification module.

Dataset
source

Positive
objects

Negative
objects

Neutral
objects

Total
no. of
objects

EMOd [4] 705 1002 661 2368
Coco

attributes [11] 630 100 730 1460

Total 1335 1102 1391 3828

AlexNet [10], GoogleNet [15], VGG-16 [13], ResNet-50
and ResNet-100 [6]. To determine which architecture best
captures the feature space for predicting the object senti-
ment, we fine-tune these networks using update momentum
equal to 0.9, base learning rate equal to 0.001 and weight
decay equal to 0.005. The learning rate is then dropped
by a factor of 0.96 every after 104 iterations for CaffeNet,
AlexNet, GoogleNet and VGG and after 5×104 for ResNet-
50 and ResNet-100. Due to different number of layers in
each architecture, CaffeNet, AlexNet and GoogleNet are
trained for 80 epochs, the VGG for 100 epochs and the
ResNet-50 and ResNet-100 for 300 and 350 epochs, respec-
tively.

1.3. Results

Using the dataset described in Table 2, we found out
that the best architecture for the sentiment classifier is
GoogleNet achieving 71.91% classification accuracy. Table
3 summarizes the average performance of each network on
the five-fold cross validation. Sample images classified as
positive-evoking, negative-evoking and neutral objects are
shown in Fig. 2.

Table 3: Average five-fold cross validation accuracy of
emotion classifier after fine-tuning the different networks.
The main difference of GoogleNet from other deep net-
works is in its inception architecture that essentially rep-
resents the multi-resolution information.

Networks Accuracy
CaffeNet 60.01%

GoogleNet 71.91%
AlexNet 58.68%

ResNet-50 60.31%
ResNet-101 62.26%

VGG-16 63.12%

2. Architectures for integrating emotion to
saliency model

The integration of emotion to the feature space of
saliency model is composed of two modules, the sentiment
mask generation module and the semantic feature extrac-
tion module. We considered three architectures, as shown
in Fig. 4, for the final design of the EASal.

2.1. Sentiment Mask Generation Module

The sentiment mask generation module has object pro-
posal submodule (we used Mask R-CNN [5]) and object
sentiment classifier submodule, discussed in the previous
section. It interfaces the discrete outputs of the object sen-
timent classifier submodule to the semantic feature gener-
ation module by converting the discrete sentiment labels
into a three-channel mask. Each channel contains the cor-
responding object sentiment mask. That is, the first channel
is for the positive sentiment, the second channel is for the
negative sentiment, and the third channel is for the neutral
sentiment. The generated three-channel mask is then used
as additional feature in saliency prediction. The propagated
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Figure 3: Sample generated masks from the object propos-
als. For illustration, red pixels corresponds to the positive
emotion-evoking object mask, blue pixels corresponds to
the negative emotion-evoking object mask and gray pixels
corresponds to the neutral objects.

masks shown in Fig. 3 are some of the outputs of the sen-
timent masks generation module and is used accordingly in
the semantic feature extraction module.

2.2. Semantic Feature Extraction Module

The incorporation of emotion to saliency model is based
on our empirical study that emotion attracts attention.
We fine-tune all architectures considered using SALICON
dataset. The semantic feature extraction branch of the
saliency model has two VGG-16 branches, corresponding
to the fine and coarse branches to account for the selective
human attention at different viewing resolution. Increasing
the number of branches further to consider more viewing
resolutions, according to [7], does not improve the perfor-
mance of the system. In combining the sentiment mask with
the semantic feature extraction branch, we considered three
fusing architectures shown in Fig. 4.

We first investigate the early fusion architecture which
adds sentiment masks as new channels at the input of the
saliency model as illustrated in Fig. 4-(a). The positive
mask, negative mask and neutral mask are concatenated
with the RGB input, generating an input with six chan-
nels. The first convolution layer for both the fine and coarse
branches are modified for the six-channel input. The result-
ing size (number of outputs × number of input channels ×
2D filter size) of the first convolution layer, for both the fine
and coarse branches, changes 64×3×3×3 to 64×6×3×3.
The advantage of the early fusion scheme is the minimal in-
crease in the complexity of the saliency model.

We next evaluate late fusion architecture which incorpo-
rates the sentiment mask at the concatenation layer. How-
ever, as the concatenation layer has 1024 feature maps while
the sentiment mask has only three layers (negative, posi-
tive and neutral), the concatenation layer overwhelms the
three-channel sentiment mask during linear combination.
To address this, the 1024 feature maps are transformed to
three feature maps by modifying the last layer from size
1× 1024× 1× 1 convolution to size 3× 1024× 1× 1 con-

volution (see Fig. 4-(b)). A second concatenation layer is
then introduced, combining the three-channel feature map
output of the first concatenation layer to the three-channel
sentiment mask. Other than complexity, the advantage of
the late fusion scheme is that it can directly connect saliency
prediction and object sentiment using the filter weights for
the emotion layers.

Finally, we test the intermediate fusion architecture. The
feature maps from the semantic feature extraction branch
in the last layer are copied to the sentiment mask genera-
tion branch. The copied feature maps are then multiplied
element-wise to the sentiment masks via the 1 × 1 convo-
lution filter, as illustrated in Fig. 4-(c). As the semantic
feature maps are copied to the sentiment mask generation
module to combine with the sentiment mask, the sentiment
masks are down-sampled to 19×25 so that the mask size be-
comes equal to the size of the semantic feature maps. At the
output is the concatenation layer, whose length was changed
to 4096 feature maps from the original size of 1024. To re-
duce the dimension of the output to a single 19× 25, 1× 1
convolution is added at the last layer.

2.3. Training

In the initial evaluation to determine which of the three
architectures is the best, we used 776 images for fine-tuning
the proposed architectures described in Fig. 4. The input
image was transformed into 300×400 image and 600×800
image as input to the coarse and fine channel, respectively.
The corresponding sentiment mask of early fusion was also
converted to the appropriate input size. For the late and
intermediate fusion architectures, the corresponding ground
truth mask of the input image is converted to 19×25 which
is the size of the feature maps in the concatenation layer.

The feature extraction branch is first fine-tuned using
SALICON dataset [9] with momentum of 0.9 and initial
learning rate of 1e-5. The learning rate decreases by a fac-
tor of 0.1 every 8000 iterations. As the SALICON train-
ing dataset has no ground truth sentiment mask, the seman-
tic feature extraction branch is separately fine-tuned. The
trained saliency prediction branch is then combined with
the sentiment information, correspondingly using the three
architectures, for fine-tuning. A subset of EMOD (776 im-
ages) is used as the training set. Except for the first two lay-
ers whose filter weights were fixed, all filter weights were
fine-tuned with momentum of 0.9 and initial learning rate
of 1e-5.

For the sentiment mask generation branch of the inter-
mediate fusion architecture, the three 1× 1 convolution fil-
ters are initialized to 1.0 and the biases are fixed to 0.0, to
force the whole network to use the sentiment information
in saliency prediction. The learning rate multiplier is set to
10−3 and the bias multiplier set to 0.0. The object senti-
ment classification module in the sentiment mask genera-
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(a) Early fusion

(b) Late fusion

(c) Intermediate fusion

Figure 4: We considered three architectures for incorporating the object sentiment information in saliency prediction. The
first architecture in (a) is called early fusion. It adds a fourth layer which corresponds to the sentiment layer, to the RGB
input data. The second architecture in (b) is called the late fusion. It incorporates the sentiment information at the output
of the concatenation layer, thus adding second concatenation layer. Finally in (c) is called the intermediate fusion. It adds a
new channel for the masks (parallel of three convolution filters followed by a regularization function ReLU). The output at
the last layer is then multiplied with the semantic feature maps from the semantic feature extraction module. For the three
architectures, other parameters, such as the number of layers and filters in the semantic feature maps, are retained.
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Table 4: Comparison of saliency performance for late, early and intermediate fusion architectures using the sentiment mask.
The intermediate fusion architecture shows the best performance among the three fusion types, especially in terms of metrics
that measure relative saliency of image regions, i.e. NSS and IG. The dataset used is EMOd.

Fusion types NSS↑ KL↓ IG↑ EMD↓ AUC-Judd↑ sAUC↑ CC↑ SIM↑
Early (Fig. 4 a) 1.68 5.64 1.41 2.74 0.81 0.73 0.65 0.58
Late (Fig. 4 b) 0.90 6.83 0.18 4.28 0.73 0.62 0.33 0.45
Intermediate (Fig. 4 c) 1.83 5.54 1.58 2.61 0.82 0.73 0.66 0.59
Intermediate with con-
trol signal (Fig. 5)

1.85 5.50 1.65 2.55 0.83 0.78 0.66 0.57

tion branch is trained separately.
For all three candidate architectures, the continuous fix-

ation maps were used as the ground truth. The training
and testing are implemented using Caffe framework and
GeForce GTX TITAN X.

3. Evaluation
3.1. Metrics

The saliency metric scores reported in this paper are the
AUC-Judd, sAUC, NSS, SIM, KL and IG. The area under
the ROC curve (AUC) score is the most commonly-used
metric for saliency evaluation. It measures the trade-off
between the true and false positives at various discrimina-
tion thresholds. It is invariant to contrast and monotonic
transformation such that it is particularly good in detection
applications. The normalized saliency scanpath (NSS) and
the correlationa coefficient (CC) are highly related saliency
metrics because of their analogous computation. NSS mea-
sures the correspondence between the saliency map and the
ground truth fixation. It is sensitive to false positives, rela-
tive differences in saliency across the image and monotonic
transformation. Similarly, CC measures the how correlated
or dependent two variables are. As opposed to NSS, CC
equally penalizes false positive and false negatives such that
the increase in CC alone can not distinguish whether the im-
provement is due to false positives or false negatives.

The Kullback-Leibler divergence (KL), information gain
(IG) and similarity (SIM) metrics rank differently the
saliency maps, as opposed to NSS and CC, for the reason
that these metrics are extremely sensitive to false positives.
KL is a dissimilarity metric which evaluates the loss of in-
formation when the saliency map is used to approximate
the ground truth fixation map. IG on the other hand, mea-
sures the average information gain of the saliency map over
the center prior baseline at fixated locations. Lastly, SIM
measures the similarity between the saliency map and the
ground truth fixation map.

Note that recently, AUC scores, SIM and CC have come
to a situation when no significant increase in value is seen
regardless of the saliency model [1, 2]. These metrics can-
not differentiate between models and cannot measure model

performances at a finer-grained level.

3.2. Results and optimization

As shown in Table 4, the most desirable performance
among early, late and intermediate fusion types is from
the intermediate fusion architecture in terms of NSS and
IG scores. Thus, we use the intermediate fusion as the
base configuration for the emotion-aware saliency predic-
tion model (EASal). We then variably introduce emotion
information to saliency prediction inspired by our empirical
data analyses.

Our empirical data analyses show that the emotion pri-
oritization effect depends on image complexity and image
context. Based on this finding, we initially design a control
signal (as illustrated in Fig. 5) to determine whether the in-
formation from emotion mask generation branch should be
incorporated in the final saliency map. The signal is set as
on by default, but it is automatically turned off when both of
the two following situations are met: (1) the image is com-
plex (i.e. more than 6 object proposals are detected within
the same image); and (2) the image contains only one type
of object sentiment (i.e. all detected objects sentiment la-
bels were the same). We determined the threshold for the
number of objects in (1) using our empirical data analy-
ses. Results show (see Tab. 4 last row) that saliency predic-
tion improves when emotion prioritization effect based on
our empirical data analyses is included in the design. We
present the automatic learning of this control signal in our
final design presented in the main paper.

4. Discussion

As opposed to the emotion-evoking regions (ER) intro-
duced in [12, 14, 17], the emotion-evoking objects sen-
timent masks have detailed object contours. With the
detailed contours and object-based nature, the sentiment
masks have the following advantages over ERs: i) They
provide more precise information for saliency prediction.
ii) They are more explainable and indicative of image com-
plexity, which echoes with our human findings and con-
tributes to the EASal’s control signal subnetwork. Addi-
tional experiments by replacing the sentiment masks with
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Table 5: Performance of EASal with sentiment masks (ours) versus EASal with emotion-evoking regions (ERs) on EMOd.

Method NSS↑ KL↓ IG↑ EMD↓ AUC-Judd↑ sAUC↑ CC↑ SIM↑
Sentiment masks (ours) 1.85 5.50 1.65 2.55 0.83 0.78 0.66 0.57

Emotion-evoking regions [17] 1.61 6.41 1.41 2.95 0.83 0.71 0.59 0.54

Figure 5: The initial design of the proposed saliency model is composed of two branches: (1) the semantic feature extraction
branch which learns semantic information from the input image, and (2) the object-level sentiment mask generation branch
which generates and incorporates the objects’ sentiment masks to the feature maps from the semantic branch. We use a control
signal to determine if the two branches should be combined based on detected image complexity and object sentiments. If
the signal is on, all feature maps will be combined via the last convolution filter block.

the ERs from [17], shown in Table 5, support our claim.
Through emotion information, EASal was able to correct

the relative saliency prediction of image regions by identify-
ing emotion-evoking objects and providing higher saliency
prediction on their locations (through the 1× 1 convolution
filters at the sentiment mask generation branch). These can
be observed when we compare the top 5 activated neurons
from the output of EASal and N-EASal as shown in Fig. 6.

The design of EASal is based on our empirical study on
the interrelation of emotion and attention, taking into con-
sideration the semantic complexity of an image. The metric
used by other studies e.g. in [3, 16, 4], which is the Atten-
tion Score (AS) or the maximum value of the fixation map
inside the object’s contour, may not be enough in studying
emotion and attention across different image complexities.

As additional illustration, consider Fig. 7. The two sets
of images (a) and (b), have objects with AS equal to 1.0 and
near 1.0. These objects receive different levels of human
attention, in terms of human fixations, but have similar high
AS score due to fixation map normalization. The first set of
images (a) has few outstanding objects, catching most hu-
man attention, thus it will also have an AS score close to 1.

The second set of images (b) has several objects with scat-
tered human fixations, but after normalization, these objects
will receive AS close to 1. We propose AttI which factors
in the consensus of human fixation or HCS to better reflect
the human attention level.
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