What does it mean to learn in deep networks? And, how does one detect
adversarial attacks?
Supplementary Material

Ciprian A. Corneanu

Univ. Barcelona CVC, UAB

1. Additional Results

The main paper illustrated the use of our approach on the
LeNet, a historical DNN. In this section, we replicate those
results on a recent DNN: VGG16 [2].

We used the exact same experimental setup of Section
3.8, including identical learning rate, weight decay, momen-
tum, etc. The difference is that we used the CIFAR10 [1]
dataset instead. CIFAR10 consists of 60,000 training im-
ages and 10,000 separate test images labelled with 10 dif-
ferent classes. These are natural images representing com-
mon objects (e.g., dog, cat, airplane). For training, data was
augmented using random horizontal flips and random crops
of equal image size with padding = 4. All data was resized
to 32 x 32 pixels and mean and variance were normalized.

Fig. 9 shows the results of our approach. The first row
in this figure shows the number of 1D cavities as a function
of the density of the functional binary graph representing
VGGI16. Different plots specify these number at distinct
epochs. The second row does the same but for 2D cavities.

Note how the maximum number of 1D and 2D cavi-
ties (indicated by a dashed red vertical line) moves toward
less dense functional representations of the VGG16, as de-
scribed in the main paper and Algorithm 2. The lowest den-
sity is achieved at epoch 80. After that, there is a small re-
gression toward higher densities, suggestive of overfitting.
These results are confirmed by the plot of the testing accu-
racy shown in Fig. 10. In this figure we see that while the
training accuracy keeps growing after epoch 80, the testing
accuracy does not. Instead, the testing accuracy slightly de-
creases after epoch 80, as suggested by our approach.

In Fig. 11, we show the plots of 1D and 2D cavities for
the original (unaltered) training samples (blue curve) and
for the adversarial samples (red curve). The plots are given
as a function of the density. As we can see in the figure, the
results mimic those reported in the main paper, allowing us
to detect the adversarial attack.
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2. Cavity Formation: An example

In the main paper we derived a theory that relates cavity
formation with generalization. These cavities are given by
the binary graphs defining the correlation of activation of
the nodes of the DNN.

To clarify the formation of these cavities, let us illustrate
this on a selected set of nodes of the LeNet DNN we used
in the main paper, Fig. 12.

In this figure, we can see the formation of 1D cavities
first, then the formation of 2D cavities, and, finally, the for-
mation of a 3D cavity (second to last binary graph). Note
how these cavities are formed as the density of the binary
graph is increased. Then, in the right-most graph, we see
how further increasing the density eliminates all the cavi-
ties.

This particular example is for the activation graph
formed at epoch 20. Layers are over-imposed to show loca-
tion in the network. The location within the layer is chosen
for the best visual effect. By increasing density (i.e., de-
creasing 7"), more and more edges are added to the graph.
Specifically, at T = .8, a couple of 2D cavities form. These
contribute to an increase in 3;. At exactly 7' = .63 a 3D
cavity is realized between these, resulting in an increase to
(2. This cavity is filled at higher densities (7" = .5).

3. Training with Bettis

As the paper details, we can use our approach as a mea-
sure of generalization. Hence, Algorithm 2 can be used in
lieu of the training or verification error to determine when
the network has learned to generalize and before the net-
work overfits to the training data.

This result is illustrated in Fig. 13. This figure shows the
testing classification accuracy (in blue) and the difference of
the peak densities at epoch ¢ and ¢t — 1 (in black). Also note
that classification accuracies are given on the left y-axis and
values of Ak = k, — k;_1 are on the right y-axis.

When Ak is beyond a small threshold —e, Algorithm 2
decides to stop training. As shown in the figure that coin-
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Figure 9. Results of the VGG16 on CIFAR. (a) Number of normalized 1D cavities (y-axis) as a function of graph density (z-axis) and
number of epochs (given at the top of each plot). (b) Same as (a) but for 2D cavities.
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Figure 10. VGG16 training and testing accuracy on CIFAR10 as a
function of training epochs.
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Figure 11. Betti numbers obtained when using unaltered and ad-
versarial testing samples. VGG16 trained on CIFAR10.

cides with the point where generalization is achieved (thick
red line in the figure). After that, the network starts to mem-
orize the samples that do not generalize.

Specifically, given Ak, we can clearly observe three dy-
namic regimes for k. Initially, in the first epochs k increases
rapidly, it then reaches a maximum value between epochs

dimension | n=1 | n <3
LeNet .66 2.71
VGG16 5.15 20.24

Table 1. Time (in minutes) it takes to compute Betti numbers for
LeNet and VGG16.

8 and 32 and then it starts decreasing in the later stage of
training. Even where no verification set is available, one
can use this knowledge to deduce when the training should
stop. One can also imagine how this approach may one day
be applied to unsupervised learning, but additional research
will be necessary to make this a reality.

4. Algorithmic Complexity

Finally, we give a formal analysis of the computational
complexity of the derived algorithm.

Let the binomial coefficient p = (JZLl) be the num-
ber of n-simplices of a simplicial complex .S. In order to
compute (3,,(S), one has to compute rank(d,+1) where
Ont+1 € RPX4, p is the number of n-simplices, and ¢ the
number of (n + 1)-simplices. This has polynomial com-
plexity O(¢%), a > 1.

Fortunately, the graphs of a network with N nodes are
far from complete (i.e., N-simplices). We take advantage of
the graph sparsity to reduce computational complexity. This
means that for typical DNNs, the number of n-simplices
is way lower than the binomial coefficient defined above,
unless one is interested in (,,(S) forn > 3,0r p = 1 (i.e.,
T =0).

In Table 1, we show the actual time (in minutes) it takes
to compute cavities for a network with 1,820 nodes for
T > .5. This corresponds to a single step of Algorithm
2, excluding training, on a single Intel Xeon, 2.2 GHz CPU.
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Figure 12. Example of 1D, 2D and 3D cavity formation in LeNet trained on MINST.
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Figure 13. An illustration of Algorithm 2 for n = 1.
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