
Supplemental Material
Scan2Mesh: From Unstructured Range Scans to 3D Meshes

1. Network Architecture Details

Figure 1 shows the detailed specification of our network
architecture. Convolutions are specified by (kernel size,
stride, padding), and are each followed by ReLUs. For
both graph neural networks, each fully connected layer (ex-
cept the last) is followed by an ELU, and within each pair
of fully connected layers, we use a dropout of 0.5 during
training and batch normalization following each pair. The
node-to-edge and edge-to-node message passing operations
are as defined in the main paper, through concatenation and
summation, respectively.

2. Learned Feature Space

In Figure 2, we visualize the t-SNE of the latent vec-
tors learned from our Scan2Mesh model trained for shape
completion. We extract the latent vectors of a set of test in-

Verts Train Inference
Time(s) Memory(GB) Time(s) Memory(GB)

100 0.15 0.38 0.13 0.07
200 1.15 1.44 1.04 0.12
300 4.62 3.29 4.32 0.27
400 15.8 5.96 14.24 0.55

Table 1: Time and memory during training and inference
time for joint vertex-edge prediction as the number of pre-
dicted vertices grows. Note time measurements include
a CPU hungarian algorithm computation (which currently
dominates for larger number of vertices), and memory in-
cludes all allocated device memory.

put partial scans (the 256-dimensional vector encoding) and
use t-SNE to visualize the feature space as a 2-dimensional
embedding, with images of the partial scans displayed ac-

Figure 1: Network architecture specification for our mesh generation approach.

1

Figure 2: t-SNE visualization of the latent features learned from our Scan2Mesh model trained on shape completion. Features
corresponding to input partial scans are visualized, with objects of similar geometric structure lying close together in this
space.

cordingly. Our model learns to cluster together shapes of
similar geometric structure.

3. Shape Generation

In the main paper, we demonstrate our mesh generation
approach on the task of scan completion of shapes; we can

also apply it to other tasks such as shape generation. Here,
instead of learning an encoder for TSDF scans of shapes, we
train a variational autoencoder [2] to produce mesh vertices
and edges (on the same 8-class training set of ShapeNet [1]
objects). Figure 3 shows shapes generated by drawing ran-
dom samples from a unit normal distribution, along with
nearest neighbor ground truth objects.

Figure 3: Our mesh generation approach applied to the task of shape generation. We show random samples from the space
learned by our model, along with nearest neighbor ground truth models.

4. Direct Mesh Face Prediction Details
Here, we further describe the details of the approach to

directly predict mesh faces from a single graph neural net-
work, as presented in the ablation study of the main results
section. This graph network structure has the (predicted)
mesh vertices as its nodes, with message passing then op-
erating on every set of 3 nodes (assuming a triangle mesh
structure). Messages are then passed from node to face
through concatenation, and from face to node through sum-
mation, similar to the node-edge message passing:

v → f : h′
i,j,k = gf ([hi,hj ,hk])

f → v : h′
i = gv(

∑
{fi,j,k}

hi,j,k)

where an updated face feature is the concatenation of the
node features from which it is composed, and an updated
node feature is the sum of features of all faces incident on
that node. Here, even for triangle meshes, the combinatorics
grows tremendously with O(n3), making the optimization
for face structure challenging.

References
[1] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan,

Q. Huang, Z. Li, S. Savarese, M. Savva, S. Song, H. Su, et al.
Shapenet: An information-rich 3d model repository. arXiv
preprint arXiv:1512.03012, 2015. 2

[2] D. P. Kingma and M. Welling. Auto-encoding variational
bayes. arXiv preprint arXiv:1312.6114, 2013. 2

