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In this supplementary material we provide additional de-
tails and results. Section 1 provides details about the other
network architectures evaluated for IoU prediction in sec-
tion 4.1 of the main paper. Section 2 performs an empiri-
cal convergence analysis of the employed optimization pro-
cedure and the gradient descent. Detailed results on the
LaSOT [4] dataset are provided in section 3. Section 4
provides results on the OTB-100 [12] dataset. The im-
pact of the training data on performance of our tracker is
analyzed in section 5. Section 6 provides detailed results
on the UAV123 dataset. A video showing qualitative re-
sults of our tracker can be found at https://youtu.
be/T8x8i1KkYGk.

1. Network Architectures for IoU Prediction

Here we describe the different network architectures for
integrating the target appearance, investigated in section 4.1
of the main paper. Figure 1 visualizes the Concatenation
architecture. In this architecture, both the reference and
test branches have the same network structure. ResNet-18
Block3 and Block4 features that are extracted from the
reference and test images are passed through two Conv lay-
ers, followed by PrPool and an FC layer. The processed
features from both the ResNet blocks and both the images
are concatenated and passed through a final FC layer which
predicts the IoU. Note that due to the symmetric struc-
ture of the network, the weights for the Conv layers be-
fore PrPool are shared between the reference branch and
the test branch. However the FC layers do not share the
weights.

Figure 2 visualizes the Siamese architecture. Similar
to Concatenation, both the reference and test branches
have the same network structure. ResNet-18 Block3 and
Block4 features that are extracted from the reference and
test images are passed through two Conv layers, followed
by PrPool and an FC layer. The processed features from
both the ResNet blocks are then concatenated. The IoU pre-
diction is obtained as the dot product of the features from
the reference and the test branches. The Conv layers be-

Figure 1. Architecture of the Concatenation network for IoU pre-
diction evaluated in section 4.1 in the paper.

Figure 2. Architecture of the Siamese network for IoU prediction
evaluated in section 4.1 in the paper.

fore PrPool have shared weights. In the final FC layer
however, we found it beneficial not to share the weights be-
tween the branches.

2. Convergence Analysis
We empirically compare of the convergence speed of the

employed optimization method (algorithm 1 in the paper)
and Gradient Descent (GD). This is performed by compar-
ing the loss for the online learning problem eq. (3), which
is minimized in the first frame w.r.t. the filter weights w1

and w2. For our method, we use the settings described in
the paper. In case of Gradient Descent we employ the same

https://youtu.be/T8x8i1KkYGk
https://youtu.be/T8x8i1KkYGk
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Figure 3. Comparison of convergence speed between our em-
ployed online optimization procedure and Gradient Descent. We
plot the loss of the online classifier learning (eq. (3) in the paper)
w.r.t. the number of performed BackProp iterations. The loss is
averaged over five independent runs of the complete NFS dataset.
The employed method achieves much faster convergence.

settings used in the ablation study (section 4.2 in the paper).

In figure 3 we plot the loss (eq. (3) in the paper) for each
method. For a fair comparison, the loss is plotted w.r.t. the
number of BackProp calls performed by each method. The
loss in figure 3 is computed as an average of five complete
runs over the full NFS dataset [5]. Our CG-based optimiza-
tion algorithm exhibits superior convergence speed com-
pared to Gradient Descent. Moreover, the employed opti-
mization methods does not require tuning of the step length
and momentum parameters.

3. Detailed results on LaSOT dataset

In table 4 in the main paper, we provide a state-of-the-
art comparison on the large-scale LaSOT dataset in terms
of normalized precision and success. Here, we provide the
success plot for the same. The success plots are obtained
using the overlap precision (OP) score, which is computed
as the percentage of frames in the dataset for which the
intersection-over-union (IoU) overlap between the tracker
prediction and the ground truth bounding box is higher than
a certain threshold. The OP scores are plotted for a range
of thresholds in [0, 1] to obtain the success plot. The area
under this plot gives the AUC (success) score, which is re-
ported in the legend. Figure 4 shows the success plot over
the 280 test videos. Our approach ATOM significantly out-
performs the previous best approach DaSiamRPN [14] with
an absolute gain of 10.0% in AUC score.
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Figure 4. Success plot on the LaSOT dataset. Note that due to the
unavailability of raw results for DaSiamRPN, we only report the
final AUC score in the legend. Our approach ATOM outperforms
all previous methods by a large margin.
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Figure 5. State-of-the-art comparison on the OTB-100 dataset.
Our approach obtains results competitive with the state-of-the-art
approaches.

4. Results on OTB-100 dataset
Here, we compare our approach with the state-of-the-

art trackers on the OTB-100 [12] dataset. The success plot
over all the 100 videos are shown in figure 5. Our ap-
proach achieves results competitive with the state-of-the-art
approaches, with an AUC score of 67.1%. Note that the best
results are obtained by the correlation filter based methods,
ECO [2] and CCOT [3]. These methods employ brute-force
multi-scale search for target estimation. Since OTB-100 has
limited changes in aspect ratio (see figure 2 in [7]), the fixed
aspect ratio constraint in multi-scale search strategy helps
these methods to obtain a better accuracy.



SINT ECO DSiam StructSiam SiamFC VITAL MDNet DaSiamRPN ATOM-VID ATOM

Norm. Prec. (%) 35.4 33.8 40.5 41.8 42.0 45.3 46.0 49.6 55.0 57.6
Success (%) 31.4 32.4 33.3 33.5 33.6 39.0 39.7 41.5 49.5 51.5

Table 1. Comparision of our approach trained using only
ImageNet-VID (denoted ATOM-VID) on the LaSOT dataset. Our
approach, trained using considerably less data as compared to the
previous best approach DaSiamRPN, significantly outperforms it
with an absolute gain of 8.0% in AUC score.

Staple SAMF CSRDCF ECO SiamFC CFNet MDNet UPDT DaSiamRPN ATOM-VID ATOM

Precision (%) 47.0 47.7 48.0 49.2 53.3 53.3 56.5 55.7 59.1 61.8 64.8
Norm. Prec. (%) 60.3 59.8 62.2 61.8 66.6 65.4 70.5 70.2 73.3 74.6 77.1
Success (%) 52.8 50.4 53.4 55.4 57.1 57.8 60.6 61.1 63.8 69.8 70.3

Table 2. Comparision of our approach trained using only
ImageNet-VID (denoted ATOM-VID) on the TrackingNet dataset.

5. Impact of training data

In this section, we investigate the impact of using re-
cent large-scale tracking datasets for offline training of our
IoU predictor network. We train our network using only
the ImageNet-VID [10] dataset, that has been commonly
used to train trackers [1, 11, 13] in recent years. We com-
pare this version, denoted ATOM-VID, with the state-of-
the-art approaches on two recent datasets, namely LaSOT
[4] and TrackingNet [8]. For comparision, we also include
our final version ATOM, trained using the train splits of
LaSOT, TrackingNet and COCO [6]. Results are shown
in table 1 for LaSOT and table 2 for TrackingNet, respec-
tively. Among previous approaches, DaSiamRPN [14] uses
bounding box regression strategy and achieves the best re-
sults on both datasets. Note that DaSiamRPN is trained us-
ing the large-scale YoutubeBB [9], ImageNet-VID, COCO
and ImageNet DET [10] datasets. Our approach ATOM-
VID, trained using only ImageNet-VID, significantly out-
performs DaSiamRPN with an absolute gain of 8.0% in
AUC score on LaSOT, and 6.0% in AUC score on Track-
ingNet. Using the recent tracking datasets for training fur-
ther improves the results, providing an absolute gain of
2.0% on LaSOT and 0.5% on TrackingNet. While using
a larger training set improves the tracking performance as
expected, our approach still achieves state-of-the-art results
when using less data compared to recent methods.

6. Additional Results on UAV123

Here, we provide detailed results on the UAV123
dataset [7]. In UAV123, each video is annotated with 12
different attributes: aspect ratio change, background clut-
ter, camera motion, fast motion, full occlusion, illumina-
tion variation, low resolution, out-of-view, partial occlu-
sion, scale variation, similar objects, and viewpoint change.
Figure 6 shows the success plots for all the attributes. Our
approach obtains the best results on all 12 attributes. Thanks
to our target estimation module, our approach excels in
case of aspect ratio change, scale variation, and viewpoint
change. Furthermore, due to our robust online-learned clas-

sifier, our tracker also outperforms previous methods in case
of similar objects, illumination variation, partial occlusion,
and low resolution.
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Success plot of Aspect Ratio Change (68)
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Success plot of Background Clutter (21)
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Success plot of Camera Motion (70)
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Success plot of Fast Motion (28)
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Success plot of Full Occlusion (33)
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Success plot of Illumination Variation (31)
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Success plot of Low Resolution (48)
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Success plot of Out-of-View (30)
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Success plot of Partial Occlusion (73)
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Success plot of Scale Variation (109)
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Success plot of Similar Object (39)

ATOM [64.2]

DaSiamRPN [53.6]

SiamRPN [53.3]

ECO [53.3]

CCOT [52.3]

UPDT [51.6]

SRDCF [46.4]

Staple [46.1]

ASLA [42.7]

SAMF [41.7]

0 0.2 0.4 0.6 0.8 1

Overlap threshold

0

10

20

30

40

50

60

70

80

90

O
v
e
rl
a
p
 P

re
c
is

io
n
 [
%

]

Success plot of Viewpoint Change (60)
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Figure 6. Attribute analysis on the UAV123 dataset. Our approach ATOM obtains the best performance on all 12 attributes.


