Centripetal SGD for Pruning Very Deep Convolutional Networks with
Complicated Structure
Appendix

Xiaohan Ding ! Guiguang Ding > Yuchen Guo® Jungong Han *
123 Tsinghua University ~ * Lancaster University
dxhl7@mails.tsinghua.edu.cn dinggg@tsinghua.edu.cn {yuchen.w.guo, jungonghan77}@gmail.com

N —— e=1x10" | 012
of | " £=2x1073 §o.1o
\ N —— £=1x1072 |
x -3 . 008
IS S | £0.06
S -6 9
¢ 0.04
— o \
o \ 50.02 / L
1 \ 0.00 s St e
0 100 200 300 400 0 100 200 300 200
epochs epochs
(a) Value of x. (b) Training loss.

Figure 1: Curves of the sum of squared kernel deviation x
(note the logarithmic scale) and the training loss with dif-
ferent centripetal strength e. The learning rate is decayed at
epoch 200 and 300, respectively.

C-SGD is Insensitive to the Hyper-parameter

We perform a set of controlled experiments on ResNet-
56 to study the effects of the centripetal strength € by setting
€tol x 1073,2 x 1072 and 1 x 1072, respectively. Fig.
shows that C-SGD is robust to €, as the three models con-
verge in a similar way. Intuitively, when we use C-SGD
to produce the redundancy patterns on every layer simul-
taneously, the network undergoes a period of progressive
change, which leads to an increasing loss. When this kind
of change becomes stable, i.e., when the filters in each clus-
ter have become close enough, the loss starts to decrease.
Obviously, the filters in each cluster grow centripetally at a
faster rate with a larger ¢, thus the change is finished earlier.

C-SGD Literally Slims the Network

As a contribution of this paper, we have partly solved
an open problem of constrained filter pruning, which sev-
eral preceding works choose to sidestep. From a holistic
perspective we are literally slimming the complicated net-
works, rather than clipping some layers. More implementa-
tion details are presented in Fig. [2| and Fig. [3| where each
rectangle represents a filter, and different filters labeled by
the same letter are pushed close during C-SGD training.

[I12[3T4]5T617]8] (pacesetter)

(DICIDIA[CIBIDID]

[DICTRIA[SIB[BIB]

s

00000000 \ 00000009 00000009 o)
(imemal) . 5 « [FIGIRIS/EISIRIH
00000000 00000000 00000000 gogy
(follower) \ DICSAIEE DICIAS
00000000 00000000 0000000 0oy
@e— e e D
(imemal) _kt_.__,i'"‘l""@" ,,—‘:“f [KILTTTT[KISTRIS]
0000000 Bk LJ Loy 00000000 0ogy
L TS —— o
00000000 i the parameter hyperspace 00000000 00000000 o
Original Network Clustering C-SGD Training Trimming Slimmed Network

Figure 2: Sketch for slimming ResNets. We take the first stage of a toy ResNet where every layer has 8 filters for example.
Since every convolutional layer is directly followed by exactly one batch normalization layer, we view them as a whole. We
generate clusters for the pacesetter and internal layers in each stage by k-means for example. Before we start C-SGD training,
the clustering result of a pacesetter is assigned to its followers in order to produce the same redundancy pattern.

______________ >

[DICTS]A[S]B[S/D]

S[[7[8] -------------> 0@ @ e >[DICID[A[CTBIDID]

k-means B b : szzzziillooos [DICIRA[S/BRN
00000000 000000 09000000 i)
T \, OCDECEDD DICTRAIEE IS
(23 - E """ [EIE[FIC) [EIE[RG [FIE[G
oy @ el) oy
SR 00% - R
OO i
MEEE - iy |
77/ @
ORI s - e e
Original Netv}ork Clustering C-SGD Training Trimming Slimmed Network

Figure 3: Sketch for slimming DenseNets. We take a toy DenseNet with growth rate 4 for example. Considering the special
dense connection and pre-activation structure of DenseNets, we treat the batch normalization layers separately, which are
denoted by the rectangles with chessboard-like background. As the output feature map of every convolutional layer serves
as the input of one or more batch normalization layers, we generate clusters for every convolutional layer and apply the
clustering results C to every following batch normalization layer at the corresponding position, such that the gradients of ~
and 3 are transformed as the preceding convolutional layers.

