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1. Ablation Studies
In this section, we conduct several ablation studies to

investigate the effects of various network architectures in
DeepMapping using the AVD [2]. For quantitative compar-
ison, we choose absolute trajectory error (ATE) as metrics
and include the ATE from baseline multiway registration
method [3].

Feature extraction module in the L-Net: we compare
the effects of feature extraction module, i.e., CNN-based ar-
chitecture and PointNet-based architecture [6]. The CNN-
based network consists of C(64)-C(128)-C(256)-C(1024)-
AM(1), where C(n) denotes 2D atrous convolutions that
have kernel size 3, dilation rate of 2 and n-channel out-
puts, AM(1) denotes 2D adaptive max-pooling layer.. The
PointNet-based architecture is FC(64)-FC(128)-FC(256)-
FC(1024)-AM(1) , where FC(n) denotes fully-connected
layer with n-channel output.

The box plot in Figure 1 depicts the quantitative results
of the ATE. As shown, CNN-based architecture achieves
better performance with a median error of 134.07mm than
PointNet-based architecture that has a median error of
207.84mm. This is not supervising because CNN is able
to explore local structure information from neighborhood
pixels while PointNet is a per-point function performing on
each point independently.

Architecture of the M-Net: the proposed DeepMap-
ping uses MLP in the M-Net to predict the occupancy sta-
tus in the global coordinates. We compare this architecture
with ResMLP that integrate the idea of deep residual net-
works [5]. ResMLP consists of a stack of basic residual
blocks where each residual block, denoted as RB(n), con-
tains two fully-connected layers with the same number of
output nodes n. The detailed ResMLP architecture can be
described as RB(64)-RB(64)-RB(64)-RB(128)-RB(128).
As shown in Figure 2, MLP has a marginal improvement
over ResMLP in terms of the ATE and therefore is adopted
in the proposed DeepMapping.

*This work was partially done while the authors were with MERL. And
Chen Feng is the corresponding author.

Depth and width of MLP in the M-Net: the depth and
width of MLP are defined as the number of layers in the
MLP and the number of output nodes from each layer. To
investigate the influence of layer depth, we fixed the layer
width to 64 and test MLP with depths 4, 5, 6, and 7. Figure 3
show the corresponding results of the ATE. As shown, in-
creasing MLP depth is beneficial to reducing the ATE. For
example, MLP with depth 6 has a lower error than those
with depth 4 and 5. However, deeper networks may deteri-
orate the performance and make it difficult to optimize. To
compare the effect of MLP width, we fixed the depth to 4
and choose MLP with width 32, 64, 96, and 128. As shown
in Figure 4. MLP with a width of 128 achieves the best
performance.
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Feature Extraction: CNN v.s. PointNet

Figure 1. Quantitative comparison of the ATE between CNN-
based and PointNet-based architectures in the L-Net, tested on the
AVD [2].
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M-Net: MLP v.s. ResMLP

Figure 2. Quantitative comparison of the ATE between MLP and
ResMLP in the M-Net, tested on the AVD [2].
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Figure 3. Quantitative comparison of different depths of MLP in
the M-Net, tested on the AVD [2]. The layer width is fixed to 64.
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Figure 4. Quantitative comparison of different width of MLP in
the M-Net, tested on the AVD [2]. All MLP have the same depth
of 4 layers.
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Figure 5. A 1D example to show the effectiveness of our neural-
network-based conversion of a optimization problem into a higher
dimension one. Red point shows the optimal solution found in
the converted problem, while the cyan point shows the gradient
descent optimum in the original problem. Please refer to Section 4
for a detailed explanation of the figure. Best viewed in color.

2. More Results on 2D Simulated Point Cloud
Figure 6 shows additional qualitative comparisons of

registration results on the 2D simulated dataset. As shown,
both the direct optimization and the incremental ICP with
point-to-point metric fails to register all point clouds. The
proposed DeepMapping, however, is more robust and accu-
rate than baseline methods. The last two rows in Figure 6
show two cases where all methods fail to find correct regis-
tration.

Table 1 reports the average execution time and the suc-
cess rate for different methods to register 128 point clouds.

We run DeepMapping and the direct optimization for 3000
epochs. A registration of multiple point clouds is consid-
ered successful if the ATE is less than a threshold of 20
pixel, which is about 2% of the image size (1024 × 1024).
The success rate is then defined as the ratio of the number
of successful registration to the total number of test cases.
All methods are tested on a machine with a 3.3GHz Intelr

Core™ i9-7900X CPU. We use an Nvidia TITAN XP for
“training” DeepMapping and the direct optimization. While
DeepMapping seems slow, the method in fact converges
very quickly: within 500 epochs (4.8 minutes), our ATE
error is already smaller than of baseline methods.

DeepMapping Direct Opt. ICP (Point) ICP (Plane)
Runtime 29min 17min 6.48s 12.35s

Succ. Rate 84.2% 31.5% 36.0% 53.3%

Table 1. Average runtime for 3000 epochs and success rate for
different methods tested on the 2D simulated dataset.

We also test two initialization methods, random initial-
ization and zero initialization, for the direct optimization.
Both methods have worse performances than the initializa-
tion which is the same as DeepMapping.

3. More Results on the Active Vision Dataset
Figure 7 shows additional visual comparison tested on

the AVD [2]. The black ellipse highlights the region cor-
responding to misaligned parts from baseline methods. Ta-
ble 2 lists the average execution time for 3000 epochs and
the success rate to register 16 point clouds from the AVD.
In this experiment, A registration is considered to be suc-
cessful if the ATE is less than 450mm. The hardware con-
figuration is identical to those in Section 2. As shown, the
success rate from DeepMapping is higher than the rate from
multiway registration [3].

DeepMapping Direct Opt. Multiway [3]
Runtime 24min 20min 42.49s

Succ. Rate 80.0% 77.1% 58.1%
Table 2. Average runtime for 3000 epochs and success rate for
different methods tested on the AVD.

4. Interpretation of Our Method
Given the differences between the problem formulations

in (1) and (2) (in the main paper), it is natural to ask why
we use the neural network fθ to estimate the sensor poses
T instead of directly optimizing them. In this section, we
attempt to provide a simple potential interpretation of the
benefit introduced by our formulation.

The basic inspiration comes from an optimization tech-
nique known as changing variables [1] that can convert an
originally non-convex optimization problem to an equiva-
lent convex one. In their example, a geometric program can



be converted to a linear program by substituting exponen-
tial functions as original variables. In our formulation, we
combine this idea with neural networks by replacing the op-
timization variables T with fθ (S) and transforming the ob-
jective function from (1) to (2) (in the main paper). While
we do not expect that the replacement of variables T with
neural network parameters θ yields a convex problem, we
observe that this transformation is beneficial to finding the
optimal solution to the original problem.

We conduct a simple 1D experiment to illustrate this ob-
servation. Consider a problem of finding the optimal value
of x ∈ R that minimizes L (x), a non-convex objective
function with multiple local minima shown as the black line
in Figure 5. Specifically, the objective function is defined as

L (x) = 1

2
x2 + 5 sin (10x) + 20 sin (x) .

In this experiment, we compare two optimization meth-
ods, i.e., the proposed network-based optimization and the
direct optimization. For network-based optimization, we
introduce an MLP, fθ, which consists of FC(10)-FC(20)-
FC(30)-FC(40)-FC(1). Each MLP layer is followed by
an ELU [4] activation function except for the output layer.
The MLP has one node in the input and the output layer
to replace the variable x with fθ (z), resulting in another
problem with optimization variable z. To ensure the same
starting point, the direct optimization is initialized with
x0 = fθ0 (z0) where θ0 and z0 are the initial values of net-
work parameters θ and variable z, respectively. We use gra-
dient descent with a learning rate of 2× 10−4 and run 1000
iterations. For the network-based optimization, we jointly
update the network parameters θ and z.

The cyan point shows the result using gradient descent
optimization that is performed directly on L (x), which is
trapped in a local minimum. The function L (fθ? (z)) with
the optimal θ? found in the network-based optimization is
plotted as the blue dash line in Figure 5. We take fθ? (z?) to
retrieve the optimal point x? for L (x). The red plus and red
circle in Figure 5 correspond to z? and x?, respectively. The
green star symbols show the values of x during the 1000
gradient-descent iterations.

Notice the distribution of the green star symbols, visu-
alizing the “sampled locations” in the domain, x, of the
original problem. It is interesting to see that our conver-
sion leads to a wider search range in the original problem
domain, while keeping the same number of function eval-
uations of the original problem L(·) as in direct gradient
descent.
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Figure 6. Additional visual comparisons of multiple point clouds registration from the 2D simulated dataset. The black lines are the
trajectories of sensor. The third column shows occupancy maps that are estimated by the M-Net. The black, while, and gray pixels show
the occupied, unoccupied, and unexplored locations, respectively. Note that the results of each trajectory cam be defined in arbitrary
coordinate systems and do not necessarily aligned with ground truth. The last two rows show the failure cases. Best viewed in color.



Ground Truth DeepMapping Multiway Direct Optimization

Figure 7. Additional visual comparisons from the AVD [2]. The black ellipses highlight the misaligned parts in baselines. Each color
represents one point cloud. The last two rows show the failure cases. Best viewed in color.


