Supplementary Material for: Evading Defenses to Transferable Adversarial Examples by Translation-Invariant Attacks

Yinpeng Dong, Tianyu Pang, Hang Su, Jun Zhu*

Dept. of Comp. Sci. and Tech., BNRist Center, State Key Lab for Intell. Tech. & Sys.,

Institute for AI, THBI Lab, Tsinghua University, Beijing, 100084, China

 ${\tt \{dyp17,\ pty17\}@mails.tsinghua.edu.cn,\ \{suhangss,\ dcszj\}@mail.tsinghua.edu.cn,\ \{suhangss,\ dcszj\}@mail.tsinghua.edu.cn,\ \{suhangss,\ dcszj\}@mails.tsinghua.edu.cn,\ \{suhangss,\ dcszj]@mails.tsinghua.edu.cn,\ \{suhangss,\ dcszj]@mails.tsinghua.edu.cn,\ \{suhangss,\ dcszj]@mails.tsinghua.edu.cn,\ \{suhangss,\ dcszj]@mails.tsinghua.edu.cn,\ \{suhangss,\ dcszj]@mails.tsinghua.edu.cn,\ \{suhangss,\ dcszj]@mails.$

We first show the results of the proposed translationinvariant attack method for white-box attacks and blackbox attacks against normally trained models. We adopt the same settings for attacks. We also generate adversarial examples for Inception v3 (Inc-v3) [5], Inception v4 (Inc-v4), Inception ResNet v2 (IncRes-v2) [4], and ResNet v2-152 (Res-v2-152) [2], respectively, using FGSM, TI-FGSM, MI-FGSM, TI-MI-FGSM, DIM, and TI-DIM. For the translation-invariant based attacks, we use the 7×7 Gaussian kernel, since that the normally trained models have similar discriminative regions. We then use these adversarial examples to attack six normally trained models-Inc-v3, Inc-v4, IncRes-v2, Res-v2-152, VGG-16 [3], and Res-v1-152 [1]. The results are shown in Table 6 for FGSM and TI-FGSM, Table 7 for MI-FGSM and TI-MI-FGSM, and Table 8 for DIM and TI-DIM. The translation-invariant based attacks get better results in most cases than the baseline attacks.

Moreover, the experiments above and in the main paper are conducted based on the L_{∞} norm bound. We further demonstrate the applicability of the proposed method for other norm bounds, especially the L_2 norm bound. Similar to the results in Table 2-5, we present the results of FGSM and TI-FGSM in Table 9, MI-FGSM and TI-MI-FGSM in Table 10, DIM and TI-DIM in Table 11, and the ensemble method in Table 12. All those results are based on the L_2 norm bound, and we set the maximum perturbation $\epsilon=10\cdot\sqrt{d}$, where d is the dimension of input images. The results based on the L_2 norm bound also show the effectiveness of the proposed method.

References

[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In *CVPR*, 2016.

- [2] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual networks. In *ECCV*, 2016.
- [3] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition. In *ICLR*, 2015.
- [4] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A Alemi. Inception-v4, inception-resnet and the impact of residual connections on learning. In AAAI, 2017.
- [5] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethinking the inception architecture for computer vision. In CVPR, 2016. 1

^{*}Corresponding author.

	Attack	Inc-v3	Inc-v4	IncRes-v2	Res-v2-152	VGG-16	Res-v1-152
T 2	FGSM	79.6*	35.9	30.6	30.2	49.7	36.3
Inc-v3	TI-FGSM	75.4*	37.3	32.1	34.1	62.0	44.9
Inc-v4	FGSM	43.1	72.6*	32.5	34.3	50.7	37.7
1110-14	TI-FGSM	45.3	68.1*	33.7	35.4	63.3	46.2
IncRes-v2	FGSM	44.3	36.1	64.3*	31.9	49.4	38.6
mckes-v2	TI-FGSM	49.7	41.5	63.7*	40.1	64.2	46.7
Res-v2-152	FGSM	40.1	34.0	30.3	81.3*	50.5	40.8
NES-VZ-13Z	TI-FGSM	46.4	39.3	33.4	78.9*	64.7	50.4

Table 6. The success rates (%) of adversarial attacks against six normally trained models—Inc-v3, Inc-v4, IncRes-v2, Res-v2-152, VGG-16, and Res-v1-152. The adversarial examples are crafted for Inc-v3, Inc-v4, IncRes-v2, and Res-v2-152, respectively, using FGSM and TI-FGSM. * indicates the white-box attacks.

	Attack	Inc-v3	Inc-v4	IncRes-v2	Res-v2-152	VGG-16	Res-v1-152
Inc-v3	MI-FGSM	97.8*	47.1	46.4	38.7	50.3	38.1
IIIC-V3	TI-MI-FGSM	97.9*	52.4	47.9	41.1	63.4	48.1
Inc-v4	MI-FGSM	67.1	98.8*	54.3	47.0	58.5	43.2
1110-14	TI-MI-FGSM	68.6	98.8*	55.3	47.7	69.0	51.3
IncRes-v2	MI-FGSM	74.8	64.8	100.0*	54.5	59.3	50.8
IIICKES-VZ	TI-MI-FGSM	76.1	69.5	100.0*	59.6	74.4	61.5
Res-v2-152	MI-FGSM	54.2	48.1	44.3	97.5*	52.6	48.7
KC5-VZ-13Z	TI-MI-FGSM	55.6	50.9	45.1	97.4*	65.6	59.6

Table 7. The success rates (%) of adversarial attacks against six normally trained models—Inc-v3, Inc-v4, IncRes-v2, Res-v2-152, VGG-16, and Res-v1-152. The adversarial examples are crafted for Inc-v3, Inc-v4, IncRes-v2, and Res-v2-152, respectively, using MI-FGSM and TI-MI-FGSM. * indicates the white-box attacks.

	Attack	Inc-v3	Inc-v4	IncRes-v2	Res-v2-152	VGG-16	Res-v1-152
T 2	DIM	98.3*	73.8	67.8	58.4	62.5	49.3
Inc-v3	TI-DIM	98.5*	75.2	69.2	59.0	74.3	59.1
Inc-v4	DIM	81.8	98.2*	74.2	65.1	65.5	51.4
1110-74	TI-DIM	80.7	98.7*	73.2	62.7	77.4	59.8
IncRes-v2	DIM	86.1	83.5	99.1*	73.5	67.9	62.7
mcKes-v2	TI-DIM	86.4	85.5	98.8*	76.3	79.3	72.2
Res-v2-152	DIM	77.0	77.8	73.5	97.4*	67.4	67.8
NC5-VZ-13Z	TI-DIM	77.0	73.9	73.2	97.2*	78.4	77.8

Table 8. The success rates (%) of adversarial attacks against six normally trained models—Inc-v3, Inc-v4, IncRes-v2, Res-v2-152, VGG-16, and Res-v1-152. The adversarial examples are crafted for Inc-v3, Inc-v4, IncRes-v2, and Res-v2-152, respectively, using DIM and TI-DIM. * indicates the white-box attacks.

	Attack	Inc-v3 _{ens3}	Inc-v3 _{ens4}	IncRes-v2 _{ens}	HGD	R&P	JPEG	TVM	NIPS-r3
I 2	FGSM	13.7	14.5	6.8	6.0	6.1	10.9	22.0	8.2
Inc-v3	TI-FGSM	15.2	15.7	10.2	8.2	18.8	11.0	25.7	10.4
Inc. v/A	FGSM	13.9	15.0	8.2	8.3	7.4	11.5	22.2	8.5
Inc-v4	TI-FGSM	13.9	16.2	10.4	8.0	9.1	11.3	24.3	8.9
IncRes-v2	FGSM	16.0	17.5	11.3	10.8	10.2	14.4	26.2	11.6
mckes-v2	TI-FGSM	18.1	18.5	15.5	12.3	13.2	14.7	29.4	13.6
Res-v2-152	FGSM	12.7	15.1	8.1	7.0	7.1	10.2	20.3	8.2
NCS-VZ-13Z	TI-FGSM	13.4	15.8	9.7	7.2	7.9	10.7	22.5	9.1

Table 9. The success rates (%) of black-box attacks against eight defenses based on the L_2 norm bound. The adversarial examples are crafted for Inc-v3, Inc-v4, IncRes-v2, and Res-v2-152 respectively using FGSM and TI-FGSM.

	Attack	Inc-v3 _{ens3}	Inc-v3 _{ens4}	IncRes-v2 _{ens}	HGD	R&P	JPEG	TVM	NIPS-r3
T2	MI-FGSM	15.9	16.3	7.0	7.8	7.5	12.8	15.7	8.4
Inc-v3	TI-MI-FGSM	22.8	24.6	14.8	14.0	13.0	15.8	22.7	15.1
Inc. v/	MI-FGSM	18.1	18.7	8.3	9.3	9.0	14.9	17.5	10.7
Inc-v4	TI-MI-FGSM	24.3	25.5	27.9	15.7	15.9	29.0	25.2	16.5
IncRes-v2	MI-FGSM	22.9	21.6	16.6	17.1	15.2	22.2	20.9	18.0
HICKES-V2	TI-MI-FGSM	35.0	35.8	30.5	26.3	26.4	29.8	35.6	28.8
Res-v2-152	MI-FGSM	18.6	18.7	10.4	12.4	10.8	14.9	15.9	11.1
NCS-VZ-13Z	TI-MI-FGSM	21.6	23.3	17.3	15.1	15.6	18.7	24.6	17.6

Table 10. The success rates (%) of black-box attacks against eight defenses based on the L_2 norm bound. The adversarial examples are crafted for Inc-v3, Inc-v4, IncRes-v2, and Res-v2-152 respectively using MI-FGSM and TI-MI-FGSM.

	Attack	Inc-v3 _{ens3}	Inc-v3 _{ens4}	IncRes-v2 _{ens}	HGD	R&P	JPEG	TVM	NIPS-r3
T 2	DIM	17.9	21.8	9.7	11.8	10.0	15.5	17.0	12.7
Inc-v3	TI-DIM	29.6	31.9	22.0	20.1	20.0	22.0	27.3	23.9
Inc. v/	DIM	21.6	22.2	12.9	15.8	13.3	20.5	19.2	16.6
Inc-v4	TI-DIM	31.0	33.1	24.0	22.8	22.9	24.8	29.2	25.1
IncRes-v2	DIM	34.5	31.0	23.8	27.0	25.8	31.5	25.0	26.9
mckes-v2	TI-DIM	43.3	45.2	42.4	39.3	42.7	42.2	43.3	41.2
Res-v2-152	DIM	29.0	30.1	18.7	27.8	19.8	26.7	21.3	23.1
NCS-VZ-13Z	TI-DIM	36.3	37.2	28.9	28.0	30.0	28.4	36.1	32.7

Table 11. The success rates (%) of black-box attacks against eight defenses based on the L_2 norm bound. The adversarial examples are crafted for Inc-v3, Inc-v4, IncRes-v2, and Res-v2-152 respectively using DIM and TI-DIM.

Attack	Inc-v3 _{ens3}	Inc-v3 _{ens4}	IncRes-v2 _{ens}	HGD	R&P	JPEG	TVM	NIPS-r3
FGSM	26.6	27.3	16.0	18.1	16.5	21.1	23.7	17.9
TI-FGSM	26.1	26.7	19.2	17.1	19.1	20.0	27.2	19.1
MI-FGSM	44.3	42.8	27.2	40.7	28.1	43.6	30.8	34.4
TI-MI-FGSM	59.3	59.0	53.0	54.6	50.0	53.3	51.3	51.1
DIM	57.0	54.7	37.4	58.9	43.4	60.3	37.3	50.3
TI-DIM	66.9	66.0	60.4	63.2	62.9	58.4	58.4	62.7

Table 12. The success rates (%) of black-box attacks against eight defenses based on the L_2 norm bound. The adversarial examples are crafted for the ensemble of Inc-v3, Inc-v4, IncRes-v2, and Res-v2-152 using FGSM, TI-FGSM, MI-FGSM, TI-MI-FGSM, DIM, and TI-DIM.