
Supplementary
In the following sections we provide additional details

and analysis regarding our results. In Section A we provide
experimental details and additional results for our method.
Section B displays visual examples of retrieved shapes and
progressive sampling. Section C offers a new application
for the progressive concept: A progressive autoencoder.

A. Additional results
In this section we extend the results section of the paper

to include: details of our experimental parameters, analysis
of the different matching methods, evaluation of regulariza-
tion parameters, elaboration of the space and time consider-
ations, analysis of critical set sampling, and comparison of
the class accuracy.

A.1. Experimental details

Classification Architecture The architecture of S-NET
for the classification experiment is inspired by the vanilla
version of PointNet by Qi et al. [31]. We use per
point 1 × 1 convolution layers with output sizes of
[64, 64, 64, 128, 128]. Then, a feature-wise max-pooling
layer is used to obtain a global feature vector. This feature
vector is passed through four fully connected layers of size
[256, 256, 256, k×3], where k is the sample size.. All con-
volution and fully connected layers are followed by ReLU
non-linearity [28] and batch-normalization layer [15], ex-
cept for the output layer. ProgressiveNet takes the architec-
ture of S-NET with k = 1024.

Classification Optimization We used Adam opti-
mizer [18] with a learning rate of 0.01, decay rate of
0.7 every 60000 steps and batch size of 32 point clouds.
The regularization weights (for equations 5 and 6) were
set to α = 30, β = 1, γ = 1, δ = 0 for S-NET and
α = 30, β = 1, γ = 0.5, δ = 1/30 for ProgressiveNet.
We trained the networks for 500 epochs with a GTX 1080
Ti GPU. When using PointNet as the task network, S-NET
training takes between 2 to 7 hours, depending on the
sample size. ProgressiveNet training takes 6 hours, when
using PointNet vanilla as the task network.

Classification Augmentation We employed the augmen-
tation proposed by Qi et al. [31]: random rotation of the
point cloud along the up-axis, and jittering the position of
each point by a Gaussian noise with zero mean and 0.02
standard deviation.

Reconstruction Architecture The architecture of S-NET
for the reconstruction experiment follows the same ba-
sic structure as in the classification case, with 1 × 1 of
sizes [64, 128, 128, 256, 128] and fully connected layers
of seizes [256, 256, k × 3]. ProgressiveNet takes the archi-
tecture of S-NET with k = 2048.

Sampling FPS ProgressiveNet ProgressiveNet
ratio (1 + ε) matching NN matching
1 87.3 87.3 87.3
2 85.6 85.7 85.4
4 81.2 82.4 82.3
8 68.1 76.4 78.2
16 49.4 68.3 74.4
32 29.7 50.7 61.0
64 16.3 27.8 40.0

Table 3. Matching methods comparison. We compare the classi-
fication accuracy of PointNet vanilla on the sampled points when
using different matching methods: (1+ ε) and Nearest Neighbour
(NN). FPS is shown for reference. NN matching is better for all
sampling ratios larger than 4.

Reconstruction Optimization To train both S-NET and
ProgressiveNet, we used Adam optimizer with a learn-
ing rate of 0.0005, momentum 0.9 and mini-batches of
50 shapes. The regularization weights were set to α =
0.01, β = 1, γ = 0, δ = 1/64. For ProgressiveNet, the
total loss is divided by the number of sample sizes |Cs|. We
trained the networks for 500 epochs with a Titan X Pascal
GPU. S-NET training takes between 4 to 8 hours, depending
on the sample size. ProgressiveNet training time is about 12
hours. No augmentation was used for reconstruction.

A.2. Matching methods

We examined two matching methods. The first one is
based on nearest neighbour (NN) matching, as detailed in
Section 3.2. In the second one, we adapted the implemen-
tation of the (1 + ε) approximation scheme for EMD [4],
provided by Fan et al. [8]. This implementation gives a
matching score for each point in one point cloud to each
point in the other one. We feed the algorithm with G and
P and take the points from P corresponding to the highest
matching score for each point in G. In Table 3 we compare
these matching methods. The accuracy is better with NN
matching for large sampling ratios, and is almost the same
for small ones.

NN matches every point in G with its closest point in P .
This ensures that all generated points that S-NET learned
are reflected in the matched set. This is not the case when
using (1 + ε), where a generated point might be matched
with a far input point, if it serves the (1 + ε) approxima-
tion scheme. In addition, NN matching is independent for
each point, thus it guarantees to keep the order of the points
produced by ProgressiveNet.

A.3. Regularization

In this section we explore the influence of the sampling
regularization loss and it’s components. Please see Sec-
tion 3.1 for the relevant background and equations.
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Figure 11. Turning off the sampling regularization loss (α =
0). PointNet vanilla was trained on complete point clouds (1024
points) and evaluated on either S-NET’s generated or sampled
points, either with or without the sampling regularization loss.
Without the regularization, the accuracy using the generated points
is slightly increased. However, the accuracy when using the sam-
pled points decreases substantially.

Turning off the regularization (α = 0) Figure 11 shows
the accuracy of PointNet vanilla using either S-NET’s gen-
erated or sampled points, with and without regularization.
Without the regularization, the accuracy using the gener-
ated points is slightly increased, which is expected, since
the regularization sacrifices some of the classification loss
to minimize the sampling loss. However, after the match-
ing process the classification accuracy on the unregularized
sampled points is much lower than when using the regular-
ization. Without the sampling regularization, the generated
points are not close to the original points and are not spread
out over the whole shape. As a result, the matching process
causes the sampled points to be very different from the gen-
erated points. Therefore, the sampled points do not preserve
the contribution of the generated points to the task.

Turning off the linear factor for Lb component (δ = 0)
In Figure 12 we see the average number of unique points
in the initial sampled set (after NN matching, before FPS
completion) as a function of the number of generated points.
For low values, the numbers are almost the same, but they
diverge for higher values. Ideally, we would like to get the
identity line Y = X , meaning that each generated point
is uniquely matched with an input point without any colli-
sions. Using a linear factor for the Lb regularization term,
such that the weight is larger for large sampling sizes, im-
proves the spread of the generated points over the shape and
reduces collisions.

Turning off the Lb component (γ, δ = 0) In Figure 13
we see the accuracy of PointNet vanilla using Progres-
siveNet sampled points, either with or without the Lb regu-
larization term. Without this term, the generated points tend
to concentrate on small portions of the input point cloud,
resulting in many collisions in the matching process. This

0 100 200 300 400 500 600 700 800 900 1000 1100
Number of generated points

0

100

200

300

400

500

600

700

800

900

1000

1100

Nu
m

be
r o

f m
at

ch
ed

 p
oi

nt
s

Y=X
ProgressiveNet
ProgressiveNet ( = 0)

Figure 12. Turning off the linear factor for Lb component
(δ = 0). Average number of unique points in the initial sam-
pled set (after NN matching, before FPS completion) is shown as
a function of the number of generated points. Ideally, we would
like to get the line Y = X , which means that every generated
point has a unique matched input point. Setting δ = 0 greatly
reduce the number of unique matches.
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Figure 13. Turning off the Lb component (γ, δ = 0). PointNet
vanilla was trained on complete point clouds (1024 points) and
evaluated on ProgressiveNet’s sampled points, either with or with-
out the Lb regularization term. The results are evidently better
with the Lb term.

makes the FPS completion more dominant.
For low sampling ratios this is not a concern, since FPS

gives decent results. For very high sampling ratios this
is also not a concern, since the task loss forces the small
number of generated points to spread over the input shape
even without the regularization. However, for the mid-range
of sampling ratios (larger than 4 and smaller than 64) the
Lb regularization term is crucial. It spreads the generated
points over the input point cloud, allowing for better match-
ing and therefore better accuracy when using the sampled
points.

Turning off the Lm component (β = 0) Removing the
Lm term results in 3.5-fold increase in the maximal distance
between the generated points and their matched points, av-
eraged over the test set. This leads to less tight matches,
resulting in up to 7% (obtained for k = 16) decrease in
classification accuracy when using the sampled points.
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Figure 14. Adding Lc component to the loss. Coverage error is
defined as the distance of the next FPS point. We observe that
adding the Lc component closes most of the gap between FPS and
ProgressiveNet.

Adding an extra regularization term FPS minimizes a
geometric measure, i.e, given k points it minimizes the dis-
tance to the k + 1 point. We regard this measure as the
coverage error. Our work found it to be an inferior proxy
to minimizing the task error. Nonetheless, if in some set-
tings the coverage error is important, we can incorporate it
by adding the following loss term to Equation 5:

Lc(G,P ) = max
y∈P

min
x∈G
||y − x||22. (9)

Figure 14 shows the coverage error as a function of the
sampling ratio, for FPS and ProgressiveNet, as well as for
ProgressiveNet when trained with the extra Lc loss term.
We observe that adding the extra term removes most of the
coverage error difference between FPS and ProgressiveNet.

PointNet’s accuracy when using the sampled points did
not change substantially when adding the extra term, thus
we conclude that it is unnecessary to minimize the coverage
error in order to get a sample that is optimized for the task.
However, it is not harmful to minimize this error as well, if
needed.

A.4. Time and space considerations

In Section 4.1 we mentioned the influence of S-NET
on inference time and memory consumption. This sec-
tion elaborates on the subject. Table 4 demonstrates how
we save most of the inference time by using S-NET for a
small increase in memory. When fed with a complete point
cloud (with 1024 points), PointNet performs 440M float-
ing point multiplications (FLOPs). When feeding only 16
points, this number drops to 7M. S-NET that samples from
1024 to 16 points requires 35M FLOPs. Cascading them to-
gether amounts to 42M FLOPs, which is 90% reduction in
inference time, compared to running PointNet on the com-
plete points clouds. S-NET that samples 16 points requires
0.18M parameters, which is only 5% of PointNet’s memory
requirement.

Network #Parameters FLOPs/
point cloud

PointNet-1024 3.5M 440M
PointNet-16 3.5M 7M
S-NET-16 0.18M 35M
S-NET-16 + PointNet-16 3.68M 42M

Table 4. Time and space complexity of S-NET and PointNet.
”M” stands for million. FLOPs stands for number of floating point
multiplications. S-NET-16 stands for S-NET with output size of
16 points. S-NET-16 + PointNet-16 stands for sampling 16 points
with S-NET and then classifying them with PointNet. Sampling
makes for a great reduction in time complexity for a modest price
in terms of space complexity.
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Figure 15. Distribution of critical set sizes for PointNet vanilla
over ModelNet40 test set. The critical set size is concentrated
around 429 points.

A.5. Critical set sampling

The critical set, as defined by Qi et al. [31], is the set
of points that contributes to the max pooled feature (MPF).
A proposed alternative to S-NET might be to extract the
critical set and use it as the sampled point cloud. This
method has three main disadvantages: first, it does not al-
low to control the sample size, but only sample to the size
of the critical set; Second, each point cloud will be sampled
to a different size, since the critical set size is not the same
across the dataset, which does not allow efficient processing
and storing; Third, the average critical set size of PointNet
vanilla on ModelNet40 test set is 429 out of 1024 points (see
Figure 15), i.e., approximately 42% of the points, which is
equivalent to sampling ratio of about 2.5. On the contrary,
S-NET enables control of the sample size and performs well
for much larger sampling ratios. This makes the proposed
alternative to S-NET not viable.

A more plausible alternative might be to sample a sub-
set of the critical set that controls most of the features. To
do so, we count the number of features that each point con-
tributes to the max-pooled features and select the k points
with most contribution. We denote this process as critical
set sampling.



Sampling FPS ProgressiveNet Critical set
ratio sampling
1 87.3 87.3 87.3
2 85.6 85.4 87.3
4 81.2 82.3 86.3
8 68.1 78.2 76.0
16 49.4 74.4 45.6
32 29.7 61.0 22.5
64 16.3 40.0 12.5

Table 5. Critical set sampling. We compare the classification
accuracy of PointNet vanilla for different sampling methods and
sampling ratios. Critical set sampling samples the critical points
that contribute to the most features to the MPF. This method is
competitive for very small sampling ratios, but is not viable for
larger sampling ratios.
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Figure 16. Absolute difference of the max pooled feature
(MPF). Three sampling methods are compared: random, FPS and
S-NET . The difference is averaged over the test set of Model-
Net40. The MPF resulting from S-NET’s points differs from the
original MPF like random and FPS.

In Table 5 we compare this sampling method with Pro-
gressiveNet and FPS. We see that critical set sampling per-
forms well for very small sampling ratios, but performs
poorly for larger ratios.

Relation between our sampling and the critical set In
this experiment we measured the percentage of critical set
points covered by S-NET’s sampled points. We found that
S-NET did not cover the critical set more than a random
sample. To further investigate this issue, we computed the
absolute difference between the MPF when feeding Point-
Net with sampled points and with the complete point cloud
of 1024 points. The results are shown in Figure 16.

S-NET did not learn to sample the critical set. It also did
not learn to reproduce the MPF. Instead, it learned to sample
points that give better classification results, independently
of the critical set. To explain this, we recall that the fully
connected layers of PointNet, which process the MPF to in-
fer the classification results, form a non-linear function. In
addition, the MPF represents the shape class with redun-
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Figure 17. Class accuracy margin. PointNet was trained on the
complete point clouds (1024 points) and evaluated on sampled
point clouds of k = 64 points, using either FPS or S-NET sam-
pling. S-NET achieves better results on 27 classes, with an average
margin of 26%, while FPS achieves better results on 8 classes with
an average margin of just 6%.

dancy (1024 floating point numbers to represent a class out
of 40 classes). Thus, it is possible to find several differ-
ent MPFs that results in the same classification. Therefore,
there are multiple sets of points that gives similar classifica-
tion results.

To further stress this point, we evaluated PointNet accu-
racy on the complementary set of the critical set for each
shape, and the accuracy only drops by 1.5%, from 89.2% to
87.7%. We conclude that the critical set is not that critical.

A.6. Class accuracy

Up to this point we reported instance classification ac-
curacy (also regarded as overall accuracy). Now we an-
alyze the per class accuracy behaviour. Figure 17 shows
the per-class difference in accuracy between using 64 S-
NET and 64 FPS points. S-NET achieves superior results
in 27 out of 40 classes (67.5%) while FPS is better in only
8 classes (20%). The results are equal for the remaining 5
classes. The average margin on the classes with superior
S-NET results is 26%, compared to just 6% average mar-
gin for the classes with better FPS results. Notably, FPS
achieves higher accuracy on the door class with a margin of
15% (80% vs 65%), while S-NET achieves higher accuracy
on the car class with a margin of 75% (91% vs 16%).



B. Visual examples

Query S-NET-32 top five retrieved CAD Models

Plant Plant Plant Plant Vase Plant
Query FPS-32 top five retrieved CAD Models

Plant Bowl Sofa Sofa Sofa Plant
Figure 18. Retrieval example. We compare the top five retrievals from the test set when using 32 sampled points, either by S-NET or
FPS. The sampled points were processes by PointNet (that was trained on complete point clouds of 1024 points) and its penultimate layer
was used as a shape descriptor. Retrieval was done based on L2 distance on this shape descriptor. S-NET was trained with PointNet for
classification, no additional training was done for retrieval. When using S-NET, four out of five retrieved shapes are correct (plant). For
FPS, only the fifth retrieved shape is correct.
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Reconstruction Reconstructions from ProgressiveNet sampled points

Input 2048 FPS 32 FPS 64 FPS 128 FPS 256

Reconstruction Reconstructions from FPS sampled points

Figure 19. Progressive sampling. First and third rows: input point cloud and samples of different sizes by ProgressiveNet and FPS,
respectively. Second and fourth rows: reconstruction from the input point cloud and from the corresponding samples. The sampled points
are enlarged for visualization purpose. Even at a sample size as low as 64 points, the reconstruction from ProgressiveNet’s points is visually
similar to the reconstruction from the complete input point cloud. On the contrary, it takes four times more FPS points to achieve this level
of similarity.



C. Extension - Progressive Autoencoder
We extended the training concept of ProgressiveNet for

training a progressive autoencoder, named ProgressiveAE.
That is an autoencoder whose output points are ordered ac-
cording to their contribution to the reconstruction of the in-
put point cloud.

Motivation The scheme of ProgressiveAE fits naturally
to a Client-Server scenario and its benefits are three-fold:
lower communication load, lower memory footprint and
level-of-detail control.

Suppose that the encoder is located at the server. Instead
of sending the whole point cloud (2048 3D points, which
are 6144 floats) to the client, the server sends only the la-
tent vector of 128 floats (98% reduction in communication
load). The client possesses only the decoder part of Pro-
gressiveAE, which is a progressive decoder.

According to the available memory resources and the re-
quired level-of-detail, the client may hold only the param-
eters corresponding to the first c output points of the de-
coder and reconstruct c points instead of n. For example, if
the client capacity allows only reconstruction of up to 256
points, it will hold the parameters needed to calculate the
first 256 output points. This amounts to more than 80%
reduction in memory consumption (number of parameters)
on the client side, compared to holding the complete 2048-
points decoder.

Furthermore, the client can choose in real time to recon-
struct an even smaller point cloud to reduce computation
load. For example, calculating the first 128 output points
results in almost 90% reduction in the number of floating
point operations (FLOPs), compared to reconstructing the
complete point cloud.

Figure 20 summarizes the time and space requirements
for reconstructing point clouds of different sizes. It is much
more efficient to reconstruct a point cloud to the required
size than to reconstruct the complete point cloud and to then
sample it to the required size.

Implementation The architecture of ProgressiveAE is
the same as that of the autoencoder proposed by Achlioptas
et al. [1], referred to as BaselineAE. The input and output
of both autoencoders consist of n = 2048 points.

Similar to the training of ProgressiveNet, we trained Pro-
gressiveAE with several loss terms. Each term computes
the Chamfer distance between the first c point of output and
the n points of the input. The overall loss is the sum of
all loss terms. For this experiment we used loss terms for
Cs = {16, 32, . . . , 2048}. The loss for training the Baselin-
eAE was Chamfer distance between the input and the output
point clouds of n points. All other training conditions are
the same as those detailed in Section A.1.

Results To measure the reconstruction performance, we
took the first c points from ProgressiveAE and computed

16 32 64 128 256 512 1024 2048
Number of reconstructed points (log2 scale)

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

Ti
m

e 
an

d 
sp

ac
e 

re
qu

ire
m

en
t (

%
)

Figure 20. Progressive decoder time and space requirements.
While a traditional autoencoder reconstructs a point cloud of a
fixed size, ProgressiveAE enables real time level-of-detail man-
agement, allowing for a great reduction in inference time. In addi-
tion, the progressive decoder may hold only the parameters needed
to reconstruct a point cloud smaller then the original, allowing for
a reduction in memory as well.
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Figure 21. Progressive autoencoder. The Normalized reconstruc-
tion error (NRE) was computed on the test split of the data, the nor-
malization factor is the reconstruction error when using the Base-
lineAE to reconstruct from complete point cloud (2048 points).
ProgressiveAE has equal or better reconstruction error.

the reconstruction error as Chamfer distance from the input
point cloud. As an alternative reconstruction approach with
c points, we sampled c points with FPS from the output
of BaselineAE. We find that ProgressiveAE has equal or
better reconstruction error for for any reconstruction size
(see Figure 21).

In an additional experiment, we took the encoder param-
eters, learned by BaselineAE, and trained only the decoder
of ProgressiveAE (the variables of the layers after the max-
pool operation). Interestingly, the reconstruction error for
ProgressiveAE in this experiment was almost the same as in
the end-to-end training of ProgressiveAE. This means that
a progressive decoder can be trained to work with the en-
coder of an existing autoencoder, without paying any cost
in terms of reconstruction quality.


