
Supplementary material of online high-rank matrix completion

Jicong Fan, Madeleine Udell
Cornell University

Ithaca, NY 14853, USA
{jf577,udell}@cornell.edu

1. Proof of some lemmas
1.1. Proof for Lemma 3

Lemma 3. The update (8) is a relaxed Newton’s method
and ensures sufficient decrease in the objective:

`(Z,D −∆D,X)− `(Z,D,X) ≤ − 1
2τ Tr(gDH−1

D g>D ).

Proof. With polynomial kernel, the objective function in
terms ofD is

`(Z,D,X) =− Tr((W1 � (XTD + c))Z)

+ 1
2 Tr(ZT (W2 � (DTD + c))Z)

+ α
2 Tr(W2 � (DTD + c)),

(1)

in which for simplicity we have omitted the terms not re-
lated toD. In (1),W1 = 〈XTD+c〉q−1,W2 = 〈DTD+
c〉q−1, and 〈·〉u denotes the element-wise u-power of a vec-
tor or matrix. Using the idea of iteratively reweighted opti-
mization, we fixW1 andW2, and get the derivative as

gD := −X(W1�ZT )+D(ZZT�W2)+αD(W2�Ir)).
(2)

We approximate `(Z,D,X) with its second order Taylor
expansion aroundD0, i.e.,

`(Z,D,X) =`(Z,D0,X) + 〈gD,D −D0〉
+ 1

2 vec(D −D0)THDvec(D −D0) +R0,
(3)

where R0 = O(‖`
(3)‖
6 ) denotes the residual of the approx-

imation and H ∈ Rr2×r2 denotes the Hessian matrix. We
have

H =


HD 0 · · · 0
0 HD · · · 0
... · · ·

. . .
...

0 0 · · · HD

 , (4)

where
HD := ZZT �W2 + αW2 � Ir. (5)

One has vec(D − D0)THvec(D − D0) = Tr((D −
D0)H(D −D0)T ). Denote

`′(Z,D,X) =`(Z,D0,X) + 〈gD,D −D0〉
+ τ

2 Tr((D −D0)HD(D −D0)T ),
(6)

where τ > 1. SinceHD is positive definite, we have

`(Z,D,X) ≤ `′(Z,D,X), (7)

provided that τ is large enough. We then minimize `′ by
letting the derivative be zero and get

D = D0 −∆D. (8)

where ∆D = 1
τ gDH

−1
D . Invoking (8) into (7), we have

`(Z,D0 −∆D,X) ≤ `(Z,D0,X)− 1
2τ Tr(gDH−1

D gTD).
(9)

1.2. Proof for Lemma 4

Lemma 4. ‖X(ZT � KXD1
) − X(ZT � KXD2

)‖F ≤
c

σ
√
n
‖X‖2‖D1 −D2‖F , where c is a small constant.

Proof. Since Z = min
Z

1
2‖φ(X) − φ(D)Z‖2F + β

2 ‖Z‖
2
F ,

we have

Z = (φ(D)Tφ(D) + βIr)
−1φ(D)Tφ(X). (10)

Denote φ(D) = USV T = Udiag(λ1, · · · , λr)V T

(the singular value decomposition), we have φ(X) =

UŜV̂ T = Udiag(λ̂1, · · · , λ̂r)V̂ T because φ(X) and
φ(D) have the same column basis. Then

Z =V (S2 + βI)−1SŜV̂ T

= V diag( λ1λ̂1

λ2
1+β

, · · · , λrλ̂rλ2
r+β )V̂ T .

(11)

Suppose β is large enough, we have λiλ̂i
λ2
i+β

< 1 for i =

1, · · · , r. It follows that ‖Z‖2F < r and E[z2
ij ] <

1
n , which

indicates that {
σz = E[|zij − µz|] < 1√

n
,

− 1√
n
< µz = E[zij ] <

1√
n
.

(12)



According to Chebyshev’s inequality, we have

Pr(|zij | > c0√
n

+ 1√
n

) < 1
c20
. (13)

Therefore, |zij | < c0√
n

holds with high probability provided
that c0 is large enough. Suppose zij ∼ N (µz, σ

2
z), we have

Pr(|zij | > c0√
n

) < e−0.5c20 (14)

according to the upper bound of Q-function of normal dis-
tribution. Then using union bound, we obtain

Pr
(
|zij | < c0√

n
,∀(i, j)

)
< 1− nre−0.5c20 , (15)

It is equivalent to

Pr
(
|zij | < c1√

n
,∀(i, j)

)
< 1− 1

(nr)c0−1 , (16)

where c1 =
√

2c0 log(nr).
On the other hand, the partial gradient of entry (i, j) of

KXD in terms of D:j (the j-th column of D) can be given
by

∂KXD(i,j)
∂D:j

= − 1
σ2 (X:i −D:j) exp(−‖X:i−D:j‖2

2σ2 ). (17)

Because |x exp(−x
2

2σ2 )| ≤ σ exp(−0.5) < 0.61σ, we have
|∂KXD(i,j)

∂Dkj
| < c2

σ for some constant c2. Then

‖KXD1
−KXD2

‖F ≤ c3
σ ‖D1 −D2‖F (18)

some small constant c3.
According to the above analysis, we get

‖X(ZT �KXD1
)−X(ZT �KXD2

)‖F
≤‖X‖2‖ZT � (KXD1

−KXD2
)‖F

≤ c1√
n
‖X‖2‖KXD1

−KXD2
‖F

≤ c1√
n
c3
σ ‖X‖2‖D1 −D2‖F

= c
σ
√
n
‖X‖2‖D1 −D2‖F .

(19)

1.3. Proof for Lemma 5

Lemma 5. For sufficiently small η, Algorithm 1 converges
to a stationary point.

Proof. Denote the objective function of (7) by `(Z,D,X),
which is lower-bounded by at least 0. When η = 0, as the
three subproblems are well addressed and do not diverge,
we have `(Zt+1,Dt+1,Xt+1) < `(Zt+1,Dt+1,Xt) <
`(Zt+1,Dt,Xt) < `(Zt,Dt,Xt). It indicates that ∆t =
`(Zt,Dt,Xt)− `(Zt+1,Dt+1,Xt+1)→ 0 when t→∞.
When ∆t = 0, the gradient of `(Zt,Dt,Xt) is 0. Then
Algorithm 1 converges to a stationary point.

When η > 0 and take D as an example, because ∆D,t

is not exact enough, we decompose ∆D,t as ∆D,t =
ct∆

∗
D,t + ∆′D,t, where 0 < ct < 1 and ∆∗D,t is nearly

optimal at iteration t. Similarly, we have ∆D,t−1 =

ct−1∆
∗
D,t + ∆′D,t−1. Then ∆̂t = (ct + ct−1η + · · · +

c0η
t)∆∗D,t + ε′, where ε′ =

∑t
i=0 η

i∆′D,i. ε
′ could be

small compared to ∆′D,t because the signs of elements of
∆′D,0, · · · ,∆′D,t may change. Suppose ct and η are small
enough such that ct < ct + ct−1η + · · · + c0η

t < 1, then
∆̂t is closer than ∆t to ∆∗t . It indicates `(Zt+1,Dt −
∆̂t,Xt) < `(Zt+1,Dt − ∆t,Xt) < `(Zt+1,Dt,Xt).
That is why the momentum can accelerate the convergence.

More formally, takeD with polynomial kernel as an ex-
ample, in Lemma 3, we have proved `(Z,D −∆D,X) −
`(Z,D,X) ≤ − 1

2τ Tr(gDH−1
D gTD). As ∆D = 1

τ gDH
−1
D ,

we have

`(Z,D −∆D,X)− `(Z,D,X) ≤ − τ2 Tr(∆DH∆T
D).

When momentum is used, ∆D is replaced by ∆D + η∆̂D.
Using the Taylor approximation similar to Lemma 3, we
have

`(Z,D −∆D − η∆̂D,X)

≤`(Z,D −∆D,X) + 〈Gη, η∆̂D〉+ η2τ
2 Tr(∆̂DH∆̂T

D),
(20)

whereGη denotes the partial derivative of ` atD −∆D. It
follows that

`(Z,D −∆D − η∆̂D,X)

≤`(Z,D −∆D,X) + η2τTr(∆̂DH∆̂T
D).

(21)

If η∆̂D is a descent value, we have

`(Z,D −∆D − η∆̂D,X)

<`(Z,D −∆D,X)

≤`(Z,D,X)− τ
2 Tr(∆DH∆T

D).

(22)

Otherwise, we have

`(Z,D −∆D − η∆̂D,X)

≤`(Z,D,X)− τ
2 Tr(∆DH∆T

D) + η2τTr(∆̂DH∆̂T
D).
(23)

SinceH is positive definite, we have

`(Z,D −∆D − η∆̂D,X) ≤ `(Z,D,X) (24)

if η is small enough. Then similar to the case of η = 0, the
convergence can be proved.

1.4. Proof for Lemma 6

Lemma 6. Updating D as D −∆D does not diverge and
ˆ̀(z, [x]ω̄,D−∆D)− ˆ̀(z, [x]ω̄,D) ≤ − 1

2ττ0
‖∇D

ˆ̀‖2F pro-
vided that τ > 1, where τ0 = ‖zzT �W2 + αW2 � Ir‖2.



Proof. Fixing W1 and W2, we have ‖∇D1
ˆ̀− ∇D2

ˆ̀‖F ≤
‖qzzT �W2 + qαW2 � Ir‖2‖D1 −D2‖F , which means
the Lipschitz constant of ˆ̀’s gradient can be estimated as
τ0 = ‖qzzT �W2 + qαW2 � Ir‖2. It follows that

ˆ̀(z, [x]ω̄,D) ≤ˆ̀(z, [x]ω̄,D0) + 〈∇D
ˆ̀,D −D0〉

+ ττ0
2 ‖D −D0‖2F ,

(25)

where τ > 1. We minimize the right part of (25) and get

D = D0 − 1
ττ0
∇x

ˆ̀ := D0 −∆D. (26)

Substituting (26) into (25), we have
ˆ̀(z, [x]ω̄,D0 −∆D)− ˆ̀(z, [x]ω̄,D0) ≤ − 1

2ττ0
‖∇D

ˆ̀‖2F .
(27)

1.5. Derivation for (36)

As the number of observed entries in each column of X
is oX = ρm, the number of observed entries in each column
of φ(X) ∈ Rm̄×n is

oφ(x) =
(
ρm+q
q

)
, (28)

where φ is a q-order polynomial map. It is known that the
number of observed entries in φ(X) should be larger than
the number of degrees of freedom of φ(X), otherwise it is
impossible to determine φ(X) uniquely among all rank-r
matrices of size m̄× n [11]. Then we require

noφ(x) > nr + (m̄− r)r, (29)

where m̄ =
(
m+q
q

)
and r =

(
d+pq
pq

)
. Substituting (28) into

(29) and dividing both sides with m̄, we get

(ρm+q
q )

(m+q
q )

>
nr + (m̄− r)r

nm̄
. (30)

Since
(ρm+q

q )
(m+q

q )
= (ρm+q)(ρm+q−1)···(ρm+1)

(m+q)(m+q−1)···(m+1) , (31)

we have
(
ρm+q
q

)
/
(
m+q
q

)
≈ ρq for small q. It follows that

ρ >
(nr+(m̄−r)r

nm̄

) 1
q =

(
r
n + r

m̄ −
r2

nm̄

) 1
q

=
(u(d+pqpq )

n +
u(d+pqpq )
(m+q

q )
− u2(d+pqpq )

2

n(m+q
q )

) 1
q

:=κ(m,n, d, p, q, u).

(32)

1.6. Derivation for (37)

We reformulate RBF kernel as
k(x,y) = exp

(
− 1

2σ2 (‖x‖2 + ‖y‖2)
)

exp
(

1
σ2 〈x,y〉

)
:= C

∞∑
k=0

〈x,y〉k

σ2kk!

= C

q∑
k=0

〈x,y〉k

σ2kk!
+O(

cq+1

(q + 1)!
),

(33)

where 0 < c < 1 provided that σ2 > |xTy| and C =
exp
(
− 1

2σ2 (‖x‖2 + ‖y‖2)
)
. We see that RBF kernel can

be approximated by a weighted sum of polynomial kernels
with orders 0, 1, · · · , q, where the error is O( cq+1

(q+1)! ). The
feature map of the weighted sum is a q-order polynomial
map, denoted by φ̂. Then it follows from (33) that

φ(x)Tφ(x) = φ̂(x)T φ̂(x) +O( cq+1

(q+1)! ), (34)

and further

φi(x) = φ̂i(x) +O(
√

cq+1

(q+1)! ), (35)

in which we have assumed that the signs of φi(x) and φ̂i(x)
are the same because it has no influence on the feature map.
It means the feature map φ of RBF kernel can be well ap-
proximated by a q-order polynomial map, where the ap-

proximation error is O(
√

cq+1

(q+1)! ) and could be nearly zero.
Therefore, ρ > κ(m,n, d, p, q, u) in (32) holds for RBF

kernel with error O(
√

cq+1

(q+1)! ) in recovering φ(X). When
φ(X) is recovered, X is naturally recovered because X
itself is the first-order feature in φ(X).

2. More about the experiments

2.1. An intuitive example

We use a simple example of nonlinear data to intuitively
show the performance of our high-rank matrix completion
method KFMC. Specifically, we sample 100 data points
from the following twisted cubic function

x1 = s, x2 = s2, x3 = s3, (36)

where s ∼ U(−1, 1). Then we obtain a 3 × 100 matrix,
which is of full-rank. For each data point (column), we
randomly remove one entry. The recovery results of low-
rank matrix completion and our KFMC are shown in Figure
1. We see that LRMC absolutely failed because it cannot
handle full-rank matrix. On the contrary, our KFMC recov-
ered the missing entries successfully. The performance of
KFMC at different iteration is shown in Figure 2, which
demonstrated that KFMC shaped the data into the curve
gradually. It is worth mentioning that when we remove two
entries of each column of the matrix, KFMC cannot recov-
ery the missing entries because the number of observed en-
tries is smaller than the latent dimension of the data.

2.2. Compared methods and parameter settings

For offline matrix completion, our KFMC with polyno-
mial kernel and KFMC with RBF kernel are compared with
the following methods.



-1
1

0

1

Incomplete data (initialized with 0)

0.5

1

0
0 -1

-1
1

0

1

LRMC-recovered data

0.5

1

0
0 -1

-1
1

0

1

KFMC-recovered data

0.5

1

0
0 -1

Figure 1: Recovery result on data drawn from (36) (the red
points are the complete data)

-1
1

0

1

iteration 1

0.5

1

0
0 -1

-1
1

0

1

iteration 25

0.5

1

0
0 -1

-1
1

0

1

iteration 50

0.5

1

0
0 -1

-1
1

0

1

iteration 75

0.5

1

0
0 -1

-1
1

0

1

iteration 100

0.5

1

0
0 -1

-1
1

0

1

iteration 200

0.5

1

0
0 -1

Figure 2: KFMC recovery performance at different iteration
on data drawn from (36)

LRF (low-rank factorization based matrix completion
[12]). LRF is solved by alternating minimization. The
matrix rank and regularization parameter are searched
within a broad range such that the best results are re-
ported in our experiments.

NNM (nuclear norm minimization [2]). NNM is
solved by inexact augmented lagrange multiplier [9]
and has no parameter to determine beforehand. There-
fore it is good baseline for our evaluation.

VMC (algebraic variety model for matrix comple-
tion [11]). In VMC, second-order polynomial ker-
nel is used, where the hyper-parameter is chosen from
{1, 10, 100}. The parameter of Schatten-p norm is set
as 0.5, which often performs the best. To reduce its
computational cost, randomized SVD [7], instead of
full SVD, is performed.

NLMC (nonlinear matrix completion [5]). In NLMC,
RBF kernel is used. The parameter σ of the kernel
is chosen from {0.5d̄, 1d̄, 3d̄}, where d̄ is the average
distance of all pair-wise data points. The parameter of
Schatten-p norm is set as 0.5 and randomized SVD is
also performed.

In our KFMC(Poly) method, second order polynomial ker-
nel is used, where the hyper-parameter is set as 1. The regu-
larization parameters α and β are chosen from {0.01, 0.1}.

In our KFMC(RBF), the setting of parameter σ is the same
as that of NLMC. The regularization parameter β is chosen
from {0.001, 0.0001} while α does not matter. The param-
eter r of KFMC(Poly) and KFMC(RBF) are chosen from
{0.5m, 1m, 2m}, where m is the row dimension of the ma-
trix.

For online matrix completion, the parameter setting
of OL-KFMC is similar to that of KFMC. Our OL-
KFMC(Poly) and OL-KFMC(RBF) are compared with the
following methods.

GROUSE [1]1. The learning rate and matrix rank are
searched within large ranges to provide the best per-
formances.

OL-DLSR (online dictionary learning and sparse rep-
resentation based matrix completion). OL-DLSR is
achieved by integrating [10] with [6]. It solves the fol-
lowing problem

minimize
D∈C,z

1
2‖ω � (x−Dz)‖2 + λ‖z‖1 (37)

for a set of incomplete data columns {x}. ω is a bi-
nary vector with ωi = 0 if entry i of x is missing and
ωi = 1 otherwise. According to [6], the method can
recover high-rank matrices online when the data are
drawn from a union of subspaces. We determine λ and
the number of columns of D carefully to give the best
performances of OL-DLSR in our experiments.

OL-LRF (online LRF [12, 8]). OL-LRF is similar to
OL-DLSR. The only difference is that ‖z‖1 is replaced

by
1

2
‖z‖2F . In OL-LRF, the matrix rank is carefully

determined to give the best performances in our exper-
iments.

For out-of-sample extension of matrix completion, our
OSE-KFMC is compared with the following two methods.

OSE-LRF First, perform SVD on a complete training
data matrix, i.e., X = USV T , where U ∈ Rm×r,
S ∈ Rr×r, V ∈ Rn×r, and r = rank(X). For a
new incomplete data column x, the missing entries are
recovered as

xω̄ = Uω̄(UT
ω Uω + λI|ω|)

−1UT
ω xω, (38)

where ω denotes the locations of observed entries, ω̄
denotes the locations of missing entries, λ is a small
constant, and Uω̄ consists of the rows of U corre-
sponding to ω̄.

1http://web.eecs.umich.edu/∼girasole/?p=110



OSE-DLSR First, a dictionary D is learned by the
method of [10] from the training data. Given a new in-
complete data x, we can obtain the sparse coefficient
as

z = min
z

1
2‖ω � (x−Dz)‖2 + λ‖z‖1. (39)

Finally, the missing entries of x can be recovered as
xω̄ = Dω̄z.

The experiments are conducted with MATLAB on a
computer with Inter-i7-3.4GHz Core and 16 GB RAM.
The maximum iteration of each offline matrix completion
method is 500, which is often enough to converge or give a
high recovery accuracy. It also provides a baseline to com-
pare the computational costs of VMC, NLMC, and KFMC.

2.3. Synthetic data

Take the case of three nonlinear subspaces as an exam-
ple, the optimization curves of our KFMC with different
momentum parameter η are shown in Figure 3. We see that
a larger η can lead to a faster convergence. Particularly,
compared with KFMC(Poly), KFMC(RBF) requires fewer
iterations to converge, while in each iteration the computa-
tional cost of the former is a little bit higher than that of the
latter. In this paper, we set η = 0.5 for all experiments.

Figure 3: Optimization of KFMC with different momentum
parameter η

Figure 4 shows the online KFMC’s iterative changes of
empirical cost function

gt(D) :=
1

t

t∑
j=1

`([xj ]ωj ,D) (40)

and empirical recovery error

et(x) :=
1

t

t∑
j=1

‖xj − x̂j‖
‖xj‖

, (41)

where x̂j denotes the recovered column and t is the number
of online samples. At the beginning of the online learning (t

is small), the recover errors and the values of cost function
are high. With the increasing of t, the recover errors and
the values of cost function decreased. In practice, we can
re-pass the data to reduce the recovery errors. In addition,
when t is large enough and the structure of the data is as-
sumed to be fixed, we do not need to update D. If the data
structure changes according to time, we can just update D
all the time in order to adapt to the changes.

Figure 4: Empirical cost function and recovery error of on-
line KFMC

In our experiments of online matrix completion, the re-
ported recovery errors are the results after the data ma-
trix was passed for 10 times. Figure 6 shows the matrix
completion errors of different number of passes. Our OL-
KFMC(Poly) and OL-KFMC(RBF) have the lowest recov-
ery errors. The recovery errors of OL-LRF and GROUSE
are considerably high because they are low-rank methods
but the matrix in the experiment is of high-rank.

Figure 5: Matrix completion errors of different passes



2.4. Real data

For the experiments of subspace clustering on incom-
plete data of Hopkins 155 datasets [13], similar to [11], we
conducted the following procedures. First, the two subsets
of video sequences, 1R2RC and 1R2TCR, were uniformly
downsampled to 6 frames. Then the sizes of the resulted
data matrices are 12 × 459 and 12 × 556. Second, we ran-
domly removed a fraction (10% ∼ 70%) of the entries of
the two matrices and then perform matrix completion to re-
cover the missing entries. Finally, SSC (sparse subspace
clustering [4]) were performed to segment the data into dif-
ferent clusters. For fair comparison, the parameter λ in SSC
were chosen from {1, 10, 100} and the best results were re-
ported.

For the CMU motion capture data, similar to [3, 11],
we use the trial #6 of subject #56 of the dataset, which
is available at http://mocap.cs.cmu.edu/. The data consists
of the following motions: throw punches, grab, skip, yawn,
stretch, leap, lift open window, walk, and jump/bound. The
data size is 62×6784. The data of each motion lie in a low-
rank subspace and the whole data matrix is of full-rank [3].
To reduce the computational cost and increase the recovery
difficulty, we sub-sampled the data to 62 × 3392. We con-
sidered two types of missing data pattern. The first one is
randomly missing, for which we randomly removed 10% to
70% entries of the matrix. The second one is continuously
missing, which is more practical and challenging. Specifi-
cally, for each row of the matrix, the missing entries were
divided into 50 missing sequences, where the sequences are
uniformly distributed and the length of each sequence is
about 68δ. Here δ denotes the missing rate. The two miss-
ing data patterns are shown in Figure 6, in which the black
pixel or region denotes the missing entries. For the online
recovery, the number of passes for OL-LRF, GROUSE, OL-
DLSR, and OL-KFMC are 10, 50, 10, and 5 respectively.
The reason for this setting is that GROUSE requires large
number of passes while the other methods especially our
OL-KFMC requires fewer passes.

Figure 6: Two missing data patterns for motion capture data

References
[1] Laura Balzano, Robert Nowak, and Benjamin Recht. Online

identification and tracking of subspaces from highly incom-
plete information. In Communication, Control, and Com-
puting (Allerton), 2010 48th Annual Allerton Conference on,
pages 704–711. IEEE, 2010. 4

[2] Emmanuel J. Candès and Benjamin Recht. Exact matrix
completion via convex optimization. Foundations of Com-
putational Mathematics, 9(6):717–772, 2009. 4

[3] Ehsan Elhamifar. High-rank matrix completion and clus-
tering under self-expressive models. In D. D. Lee, M.
Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, edi-
tors, Advances in Neural Information Processing Systems 29,
pages 73–81. Curran Associates, Inc., 2016. 6

[4] E. Elhamifar and R. Vidal. Sparse subspace clustering: Al-
gorithm, theory, and applications. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 35(11):2765–2781,
2013. 6

[5] Jicong Fan and Tommy W.S. Chow. Non-linear matrix com-
pletion. Pattern Recognition, 77:378 – 394, 2018. 4

[6] J. Fan, M. Zhao, and T. W. S. Chow. Matrix completion
via sparse factorization solved by accelerated proximal alter-
nating linearized minimization. IEEE Transactions on Big
Data, pages 1–1, 2018. 4

[7] N. Halko, P. G. Martinsson, and J. A. Tropp. Finding
structure with randomness: Probabilistic algorithms for con-
structing approximate matrix decompositions. SIAM Review,
53(2):217–288, 2011. 4

[8] Chi Jin, Sham M Kakade, and Praneeth Netrapalli. Provable
efficient online matrix completion via non-convex stochastic
gradient descent. In Advances in Neural Information Pro-
cessing Systems, pages 4520–4528, 2016. 4

[9] Zhouchen Lin, Minming Chen, and Yi Ma. The augmented
lagrange multiplier method for exact recovery of corrupted
low-rank matrices. arXiv:1009.5055v3 [math.OC], 2010. 4

[10] Julien Mairal, Francis Bach, Jean Ponce, and Guillermo
Sapiro. Online dictionary learning for sparse coding. In
Proceedings of the 26th annual international conference on
machine learning, pages 689–696. ACM, 2009. 4, 5

[11] Greg Ongie, Rebecca Willett, Robert D. Nowak, and Laura
Balzano. Algebraic variety models for high-rank matrix
completion. In Proceedings of the 34th International Confer-
ence on Machine Learning, pages 2691–2700. PMLR, 2017.
3, 4, 6

[12] Ruoyu Sun and Zhi-Quan Luo. Guaranteed matrix comple-
tion via non-convex factorization. IEEE Transactions on In-
formation Theory, 62(11):6535–6579, 2016. 4

[13] R. Tron and R. Vidal. A benchmark for the comparison of
3-d motion segmentation algorithms. In 2007 IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
1–8, June 2007. 6


