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The objective function of the adversarial game for Clus-
terGAN is:

Igicn max U(D,G,C) = Expx) [logD(C(x),x)}

D(z,6(2))]. ()

Lemma 1. For any fixed G and C, the optimal D defined by
the utility function U(D, G,C) is:

P(x)Pe(z|x)
P(x)Fe(z|x) + P(z)Pg(x|z)
_ Pe(z,x)
 Pe(z,x) + Pg(z,%)

Proof. Given the clusterer and generator, the utility func-
tion U(D, G,C) can be rewritten as

U(D.6.0) = [ [ P Pe(al) log(D(a,
o

:/ Pe(z,x)log(D(z,x))dxdz

+ Eznp(z) [1og (1 -

D*(z,x) =

x))dxdz  (2)

z)log(1l — D(z,x))dxdz

" // Pg(2,x)log(1 — D(z,x))dxdz
x))

For any (P¢(z,x), Pg(z,x)) € R? {0,0} , the function

Pc(z,x) [

f(D(z,x)) achieves its maximum at AR A CEIR

Given D*(x,z), we can further replace D in the util-
ity function U(D, G,C) and reformulate the objective as
Vv(G,cC) = mng(D, g,cC).

Lemma 2. The global optimum point of V(G,C) is
achieved if and only if P(z,%X) = P(z,x).

Proof. Given D*(x,z), the utility function V(G, C) can be
reformulated as:

V(G,C) = // Pe(z,x) log (PC(Z,];i (j’;;@ - )dxdz

o [ [ ot ston (S

Sketching the proof in original GAN paper [1], V(G,C)
cab be rewritten as:

V(G.C) =

where JSD represents the Jensen-Shannon divergence,
which is always non-negative. Therefore, the unique op-
timum of V(G,C) is achieved if and only if Pe(z,x) =
Pg(z,x), or in other words

)dxdz 3)
x)

—log4 +2J5D(Pe(z,x)||Pg(z, %)), (4)

P(z,%) = P(z,x)
O

The optimization problem for estimating our balanced
self-paced learning algorithm is:

E V’L’L

mln L(v Mlvll +ylv)le st v e[0,1]".
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Theorem 1. For any fixed C, the optimal v defined by the
objective function L(v) is

vig=1, if Ik <M — 294
V,:q:%"q—q, if A —2v¢ <lig <A —27v(g—1)
Vig = 0, if kg > —27(q—1)

where ¢ € {1,...,ny} is the sorted index of loss values

{lk1y ey Lien,, } in the k-th group.
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We can handle the ¢ groups in Problem (6) separately.
Given k, define b = [{s1=2v) (l“;’\”),..., (lk"’i/ﬂ\")],
the optimization problem w.r.t. the k-th group can be for-
mulated as follows:

minb?u+u’11%y, st. 0<u<1, (7
u

where u = [vg1, Ug2, - - - Vkn,,]. The Lagrangian function
of Problem (7) is

minb’u+u’11Tu - pfu -1 -u). @)

where > 0 and A > O are Lagrangian multipliers. Take
derivate of Problem (8) w.r.t. u and set it to zero, we get

n+A—b=2ml. )

where m = 17u. From the KKT condition we can derive
nTu = 0and AT (1 — u) = 0. Consequently, we can derive

ug =0 — 0, >0 =0 = % +m>0,
0<ug<1 =1,=0A =0 :>Z§+m=0,
ug =1 =, =0,X>0 = 5 +m<0,

(10)

where ¢ € {1,...,ny }. Without loss of generality, suppose
b is a sorted vector such that by < by < --- < b,,, then
according to Eq. (10) wehave 1 > u; > ug > -+ > up, >
0, from which we can derive

ug =20 = u, =0,Vr>g¢q = m<qg-—1,
O<ug <l = u=0,Yr>qandu, =1,Vr<q =qg—1<m<q,
ug =1 — u, =1,Vr <g == m2>q.

(11)

Combining Eq. (10) and Eq. (11) we can derive the
solution to Problem (7) as follows:

—%ng—l = uy, =0,
q;1<—%q<q :>uq:—b7q—q—|—1,
—quq :uqzla

which can be rewritten based on v as:

Vig = 1A, l if kg < A —27¢
iy = M55 0, i A%y <0 -l )
qu = 0, ’Lf lkq > )\V — 27((] _ 1)
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