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In this supplementary material we provide additional in-

formation about the evaluation experiments (Sec. 1, 2 and 3)

along with the detailed per-scene results (Sec. 4) and some

further visualizations (Fig. 1 and 2). The source code and

all the data needed for comparison are publicly available at

https://github.com/zgojcic/3DSmoothNet.

1. Evaluation metric

This section provides a detailed explanation of the eval-

uation metric adopted from [2] and used for all evaluation

experiments throughout the paper.

Consider two point cloud fragments P and Q, which

have more than 30% overlap under ground-truth alignment.

Furthermore, let all such pairs form a set of fragment pairs

F = {(P,Q)}. For each fragment pair the set of corre-

spondences obtained in the feature space is then defined as

C = {{pi ∈ P,qj ∈ Q}, f(pi) = nn(f(qj), f(P))∧

f(qj) = nn(f(pi), f(Q))}
(1)

where f(p) denotes a non-linear function that maps the fea-

ture point p to its local feature descriptor and nn() denotes

the nearest neighbor search based on the l2 distance. Fi-

nally, the quality of the correspondences in terms of average

recall R per scene is computed as

R = 1

|F|

|F|
∑

f=1

✶

(

[

1

|Cf |

∑

i,j∈Cs

✶
(

||pi − Tf (qj)||2 < τ1
)]

> τ2

)

(2)

where Tf denotes the ground-truth transformation align-

ment of the fragment pair f ∈ F . τ1 is the threshold on the

Euclidean distance between the correspondence pair (i, j)
found in the feature space and τ2 is a threshold on the in-

lier ratio of the correspondences [2]. Following [2] we set

τ1 = 0.1m and τ2 = 0.05 for both, the 3DMatch [8] as well

as the ETH [5] data set. The evaluation metric is based on

the theoretical analysis of the number of iterations k needed

by RANSAC [3] to find at least n = 3 corresponding points

with the probability of success p = 99.9%. Considering,

Method Parameter 3Dmatch data set ETH data set

FPFH [6]
rf [m] 0.093 0.310

rn[m] 0.093 0.310

SHOT [7]
rf [m] 0.186 0.620

rn[m] 0.093 0.310

3DMatch [8]
W [m] 0.300 1.5001

nvoxels 303 303

CGF [4]
rf [m] 0.186 0.620

rn[m] 0.093 0.310

rmin
2[m] 0.015 0.05

PPFNet [2]
kn[points] 17 /

rf [m] 0.300 /

PPF-FoldNet [1]
kn[points] 17 /

rf [m] 0.300 /

Table 1: Parameters used for the state-of-the-art methods in

the evaluation experiments.

τ2 = 0.05 and the relation

k =
log(1− p)

log(1− τn
2
)
, (3)

the number of iterations equals k ≈ 55000 and can be

greatly reduced if the number of inliers τ2 can be increased

(e.g. k = 860 if τ2 = 0.2).

2. Baseline Parameters

In order to perform the comparison with the state-of-the-

art methods, several parameters have to be set. To ensure

a fair comparison we set all the parameters relative to our

voxel grid width W which we set as W3DMatch = 0.3m

and WETH = 1m for 3DMatch and ETH data sets respec-

tively. More specific, for the descriptors based on the spher-

ical support we use a feature radius rf = 3

√

3

4π
W that

yields a sphere with the same volume as our voxel grid and

1Larger voxel grid width used due to the memory restrictions.
2Used to avoid the excessive binning near the center, see [4]
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FPFH [6] SHOT [7] 3DMatch [8] CGF [4] PPFNet [2] PPF-FoldNet [1] Ours Ours

(33 dim) (352 dim) (512 dim) (32 dim) (64 dim) (512 dim) (16 dim) (32 dim)

Kitchen 43.1 74.3 58.3 60.3 89.7 78.7 93.1 97.0

Home 1 66.7 80.1 72.4 71.1 55.8 76.3 93.6 95.5

Home 2 56.3 70.7 61.5 56.7 59.1 61.5 86.5 89.4

Hotel 1 60.6 77.4 54.9 57.1 58.0 68.1 95.6 96.5

Hotel 2 56.7 72.1 48.1 53.8 57.7 71.2 90.4 93.3

Hotel 3 70.4 85.2 61.1 83.3 61.1 94.4 98.2 98.2

Study 39.4 64.0 51.7 37.7 53.4 62.0 92.8 94.5

MIT Lab 41.6 62.3 50.7 45.5 63.6 62.3 92.2 93.5

Average 54.3 73.3 57.3 58.2 62.3 71.8 92.8 94.7

STD 11.8 7.7 7.8 14.2 11.5 9.9 3.4 2.7

Table 2: Detailed quantitative results on the 3DMatch dataset. For each scene we report the average recall in percent over

all overlapping fragment pairs. Best performance is shown in bold.

for all voxel-based descriptors we use the same voxel grid

width W . For descriptors that require, along with the co-

ordinates also the normal vectors, we use the point cloud

library (PCL) built-in function for normal vector computa-

tion, using all the points in the spherical support with the

radius rn =
rf
2

. Tab. 1 provides all the parameters that

were used for the evaluation. If some parameters are not

listed in Tab 1 we use the original values set by the authors.

For the handcrafted descriptors, FPFH [6] and SHOT [7]

we use the implementation provided by the original authors

as a part of the PCL3. We use the PCL version 1.8.1 x64
on Windows 10 and use the parallel programming imple-

mentations (omp) of both descriptors. For 3DMatch [8] we

use the implementation provided by the authors4 on Ubuntu

16.04 in combination with the CUDA 8.0 and cuDNN 5.1.

Finally, for CGF [4] we use the implementation provided

by the authors5 on a PC running Windows 10. Note that

we report the results of PPFNet [2] and PPF-FoldNet [1] as

reported by the authors in the original papers, because the

source code is not publicly available. Nevertheless, for the

sake of completeness we report the feature radius rf and the

k-nearest neighbors kn used for the normal vector computa-

tion, which were used by the authors in the original works.

For the 3DRotatedMatch and 3DSparseMatch data sets we

use the same parameters as for the3DMatch data set.

Performance of the 3DMatch descriptor The authors of

the 3DMatch descriptor provide along with the source code

and the trained model also the precomputed truncated dis-

tance function (TDF) representation and inferred descrip-

tors for the 3DMatch data set. We use this descriptors

directly for all evaluations on the original 3DMatch data

set. For the evaluations on the 3DRotatedMatch, 3DSparse-

Match and ETH data sets we use their source code in com-

bination with the pretrained model to infer the descriptors.

3https://github.com/PointCloudLibrary/pcl
4https://github.com/andyzeng/3dmatch-toolbox
5https://github.com/marckhoury/CGF

When analyzing the 3DSparseMatch data set results, we no-

ticed a discrepancy. The descriptors inferred by us achieve

better performance than the provided ones. We analyzed

this further and determined that the TDF representation (i.e.

the input to the CNN) is identical and the difference stems

from the inference using their provided weights. In the

paper this is marked by a footnote in the results section.

For the sake of consistency, we report in this Supplemen-

tary material all results for 3DMatch data set using the pre-

coumpted descriptors and the results on all other data set

using the descriptors inferred by us.

3. Preprocessing of the benchmark data sets

3DMatch data set The authors of 3DMatch data set pro-

vide along with the point cloud fragments and the ground-

truth transformation parameters also the indices of the in-

terest points and the ground-truth overlap for all fragments.

To make the results comparable to previous works, we use

these indices and overlap information for all descriptors and

perform no preprocessing of the data except for the ran-

dom rotations (3DRotatedMatch) and random subsampling

(3DSparseMatch).

3DSparseMatch data set In order to test the robustness

of our approach to variations in point density we create a

new data set, denoted as 3DSparseMatch, using the point

cloud fragments from the 3DMatch data set. Specifically,

we first extract the indices of the interest points provided

by the authors of the 3DMatch data set and then randomly

downsample the remaining points, keeping 50%, 25% and

12.5% of the points. We consider two scenarios in the eval-

uation. In the first scenario we use one of the fragments

to be registered with the full and the other one with the re-

duced point cloud density (Mixed), while in the second sce-

nario we evaluate the descriptors on the fragments with the

same level of sparsity (Both).
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FPFH [6] SHOT [7] 3DMatch [8] CGF [4] PPFNet [2] PPF-FoldNet [1] Ours Ours

(33 dim) (352 dim) (512 dim) (32 dim) (64 dim) (512 dim) (16 dim) (32 dim)

Kitchen 43.5 74.1 2.4 60.5 0.2 78.9 93.3 97.2

Home 1 66.7 80.1 3.8 71.2 0.0 78.2 93.6 96.2

Home 2 56.3 70.2 5.3 57.2 1.4 64.4 87.0 90.9

Hotel 1 62.4 77.0 1.8 57.2 0.4 67.7 95.6 96.5

Hotel 2 56.7 72.1 6.7 53.8 0.0 69.2 91.4 92.3

Hotel 3 72.2 85.2 1.9 83.3 0.0 96.3 98.2 98.2

Study 39.7 65.1 2.7 38.7 0.0 62.7 93.2 94.5

MIT Lab 41.6 62.3 3.9 45.5 0.0 67.5 92.2 93.5

Average 54.9 73.3 3.6 58.5 0.3 73.1 93.0 94.9

STD 12.2 7.6 1.7 14.0 0.5 11.1 3.2 2.5

Table 3: Detailed quantitative results on the 3DRotatedMatch data set. For each scene we report the average recall in

percent over all overlapping fragment pairs. Best performance is shown in bold.

FPFH SHOT 3DMatch CGF Ours Ours

(33 dim) (352 dim) (512 dim) (32 dim) (16 dim) (32 dim)

Kitchen 89 154 103 125 200 274

Home 1 142 206 134 156 252 324

Home 2 125 182 125 142 247 318

Hotel 1 86 131 73 90 192 272

Hotel 2 94 124 64 94 178 238

Hotel 3 119 159 64 130 210 276

Study 56 84 64 55 130 171

MIT Lab 74 121 84 78 194 246

Average 98 145 88 108 200 264

Table 4: Average number of correct correspondences on

3DMatch data set. We report the average number of correct

correspondences over all overlapping fragments of individ-

ual scenes.

ETH data set For the ETH data set we use the point

clouds and the ground-truth transformation parameters pro-

vided by the authors of the data set. We start by downsam-

pling the point clouds using a voxel grid filter with the voxel

size equal to 0.02m. The authors of the data set also provide

the ground-truth overlap information, but due to the down-

sampling step we opt to compute the overlap on our own as

follows. Let pi ∈ P and qi ∈ Q denote points in the point

clouds P and Q, which are part of the same scene of ETH

data set, respectively. Given the ground-truth transforma-

tion TQ
P that aligns the point cloud Q with the point cloud

P , we compute the overlap ψP,Q relative to point cloud P
as

ψP,Q =
1

|P|

|P|
∑

i=1

✶
(

||pi − nn(pi, TP,Q(Q)||2 < τψ
)

(4)

where nn denotes the nearest neighbor search based on the

l2 distance in the Euclidean space and τψ thresholds the

distance between the nearest neighbors. In our evaluation

experiments, we select τψ = 0.06m, which equals three

times the resolution of the point clouds after the voxel grid

downsampling, and consider only the point cloud pairs for

which both ψP,Q and ψQ,P are bigger than 0.3. Because

no indices of the interest points are provided we randomly

sample 5000 interest points that have more than 10 neighbor

points in a sphere with a radius r = 0.5m in every point

cloud. The condition of minimum ten neighbors close to

the interest point is enforced in order to avoid the problems

with the normal vector computation.

4. Detailed results

3DMatch data set Detailed per scene results on the

3DMatch data set are reported in Tab. 2. Ours (32 dim)

consistently outperforms all state-of-the-art by a significant

margin and achieves a recall higher than 89% on all of the

scenes. However, the difference between the performance

of individual descriptors is somewhat masked by the se-

lected low value of τ2, e.g. same average recall on Ho-

tel 3 scene achieved by Ours (16 dim) and Ours (32 dim).

Therefore, we additionally perform a more direct evalua-

tion of the quality of found correspondences, by comput-

ing the average number of correct correspondences estab-

lished by each individual descriptor (Tab 4). Where the

term correct correspondences, denotes the correspondences

for which the distance between the points in the coordinate

space after the ground-truth alignment is smaller than 0.1m.

Results in Tab. 4 again show the dominant performance of

the 3DSmoothNet compared to the other state-of-the-art but

also highlight the difference between Ours (32 dim) and

Ours (16 dim). Remarkably, Ours (32 dim) can establish al-

most two times more correspondences than the closest com-

petitor.

3DRotatedMatch data set We additionally report the de-

tailed results on the 3DRotatedMatch data set in Tab 3.

Again, 3DSmoothNet outperforms all other descriptor on

all the scenes and maintains a similar performance as on the

3DMatch data set. As expected the performance of the rota-

tional invariant descriptors [6, 7, 4, 1] is not affected by the

rotations of the fragments, whereas the performance of the

3



3DSparseMatch data set

Mixed Both

50% 25% 12.5% 50% 25% 12.5%

FPFH [6] 54.4 52.0 48.3 52.2 49.7 41.5
SHOT [7] 71.1 69.8 69.8 70.8 68.4 66.4
3DMatch [8] 73.0 72.7 70.2 73.8 72.8 72.8
CGF [4] 54.2 49.0 37.5 50.3 38.3 24.4
Ours (16 dim) 92.5 92.3 91.3 92.7 91.7 90.5
Ours (32 dim) 95.0 94.5 94.1 95.0 94.5 93.7

Table 5: Results on the 3DSparseMatch data set. ’Mixed’

denotes Scenario 1 in which only one of the fragments was

downsampled and ’Both’ denotes that both fragments were

downsampled. We report average recall in percent over all

scenes. Best performance is shown in bold.

descriptors, which are not rotational invariant [8, 2] drops to

almost zero. This greatly reduces the applicability of such

descriptors for general use, where one considers the point

cloud, which are not represented in their canonical repre-

sentation.

3DSparseMatch data set Tab 5 shows the results on the

three different density levels (50%, 25% and 12, 5%) of the

3DSparseMatch data set. Generally, all descriptors per-

form better when the point density of only one fragments

is reduced, compared to when both fragments are down-

sampled. In both scenarios, the recall of our approach

drops marginally by max 1 percent point and remains more

than 20 percent points above any other competing method.

Therefore, 3DSmoothNet can be labeled as invariant to

point density changes.
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Figure 1: Additional qualitative results of 3DSmoothNet on the 3DMatch data set. First three rows show hard examples

for which the 3DSmoothNet succeeds, whereas the last three rows show some of the failure cases. 3DMatch and CGF fail

for all these examples.
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Figure 2: Qualitative results of the 3DSmoothNet on the ETH data set. 3DSmoothNet trainined only on the indoor

reconstructions from RGB-D images can generalize to outdoor natural scenes, which consist of high level of noise and

predominantly unstructured vegetation. The data set is made even harder by the introduced dynamic between the epochs (e.g.

walking persons)
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