
Supplementary Material: HPLFlowNet: Hierarchical Permutohedral Lattice
FlowNet for Scene Flow Estimation on Large-scale Point Clouds

In the supplementary material, we provide more imple-
mentation details in Sec. A. In Sec. B, we conduct a series of
additional experiments, including more detailed analysis on
single layer empirical efficiency, test on KITTI [7, 6] with-
out depth thresholding to show if our model is translational
invariant, test on all the points of KITTI without point sub-
sampling to further demonstrate its capacity, etc. We also
provide more qualitative results in Sec. C and conduct qual-
itative error analysis in Sec. D.

A. Implementation details

We apply the same data augmentation to both point
clouds: random rotation within range [−10◦, 10◦], random
shift in range [0, 1] and random scale in range [0.95, 1.05]
in each dimension; we then do an additional random shift in
range [0, 0.3] for PC2 only.

We use Adam [4] for optimization with initial learning
rate 0.0001, the default momentum setting, and batch size
1. We train our model with the initial learning rate for 85
epochs, and then multiply the learning rate by 0.7 every 35
epochs, for a total of 500 epochs.

Fig. 1 shows the more detailed HPLFlowNet architec-
ture. Fig. 2 shows the detailed architecture of SPLAT-
FlowNet and Ours-shallow we use in the main paper.

B. Additional experiments

Detailed single layer empirical efficiency. We measure
runtime for each BCL variant in our architecture averaged
on FlyingThings3D. We then replace them with original
BCLs and do the same. Table 1 shows more detailed re-
sults. The fact that ours is more efficient is consistent across
all layers. The upper layers with coarser lattice points have
more advantage, since the numbers of non-empty lattice
points decrease and our savings on splatting and slicing be-
come more obvious (We not only reduce one step, but also
do splatting and slicing on fewer points).

Results on KITTI Scene Flow 2015 without depth
thresholding, translational invariance test. Though
trained with a depth threshold of 35 meters following [5],
we conduct experiments on KITTI Scene Flow 2015 [7, 6]
without this depth threshold and without finetuning, to see

Table 1: Detailed single layer efficiency comparison with original
BCLs on runtime (ms). The fact that ours is more efficient is con-
sistent across all layers and the upper layers with coarser lattice
points have more advantage.

Layer Ours Original BCL Ratio

DownBCL1 2.65 2.91 91.1%
DownBCL2 1.81 2.26 80.1%
DownBCL3 1.36 2.05 66.3%
DownBCL4 1.05 2 52.5%
DownBCL5 0.96 1.99 48.2%
DownBCL6 0.9 2.01 44.8%
DownBCL7 0.87 2.04 42.6%
UpBCL1 18.11 21.09 85.9%
UpBCL2 5.93 7.34 80.8%
UpBCL3 2.55 4.4 58.0%
UpBCL4 1.02 3.3 30.9%
UpBCL5 0.64 2.57 24.9%
UpBCL6 0.65 2.61 24.9%
UpBCL7 0.67 2.45 27.3%
CorrBCL1 5.79 5.97 97.0%
CorrBCL2 3.43 4.33 79.2%
CorrBCL3 1.95 3.68 53.0%
CorrBCL4 1.49 3.6 41.4%
CorrBCL5 1.39 3.7 37.6%

Table 2: Evaluation results on KITTI without depth thresholding,
n = 8, 192 (n denotes the number of sampled points per frame),
which shows that to a certain extent our model is translational in-
variant. Comparison with the No Rel. Pos. variant shows that
our translational invariance comes from taking relative positions
as inputs.

Method EPE3D EPE2D

FlowNet3 [3] 1.4695 4.4613

ICP [2] 0.4615 22.3953
FlowNet3D [5] 0.2430 6.6149
No Rel. Pos. 1.5768 14.0311
Ours 0.1365 4.3963

how methods generalize to input points with unseen coor-
dinates, and to test whether they are translational invariant.
We also evaluate on No Rel. Pos. from the ablation studies,
whose input signals are purely the global coordinates of the

1



DownBCL1 s=3 [64,64]

DownBCL2 s=2 [64,64]

DownBCL3 s=1 [64,64]

DownBCL4 s=0.5 [64,64]

DownBCL5 s=0.25 [64,64]

DownBCL6 s=0.125 [64,64]

DownBCL7 s=0.0625 [64,64]

1x1 ConvNet1 [32,32,64]

DownBCL1

DownBCL2

DownBCL3

DownBCL4

DownBCL5

DownBCL6

DownBCL7

1x1 ConvNet1
Rel. pos.

Rel. pos.

Rel. pos.

Rel. pos.

Rel. pos.

Rel. pos.

Rel. pos.

Rel. pos.

Rel. pos.

Rel. pos.

Rel. pos.

Rel. pos.

Rel. pos.

Rel. pos.

Rel. pos.

Rel. pos.

Rel. pos.

Rel. pos.

Rel. pos.

Rel. pos.

CorrBCL1 s=1 
[32,32] [64,64]

CorrBCL2 s=0.5
[32,32] [64,64]

CorrBCL3 s=0.25
[32,32] [64,64]

CorrBCL4 s=0.125
[32,32] [64,64]

CorrBCL5 s=0.0625 
[32,32] [64,64]

UpBCL7 s=0.0625 [128,128]

UpBCL6 s=0.125 [128,128]

UpBCL5 s=0.25 [128,128]

UpBCL4 s=0.5 [256,256]

UpBCL3 s=1 [256,256]

UpBCL2 s=2 [512,512]

UpBCL1 s=3 [1024,1024]

1x1 ConvNet2 [1024,512,3]

PC1 (n1 x df) PC2 (n2 x df)

OUTPUT … denote input

Figure 1: HPLFlowNet architecture with more details. The layers
with the same names share weights. s denotes the scaling factor.
Rel. pos. stands for the relative positions (point’s scaled lattice
coordinates minus its nearest 0-remainder lattice point’s coordi-
nates. For explanation of “0-remainder”, please refer to [1]). The
numbers in the square brackets are the numbers of output chan-
nels for each convolution layer, with LeakyReLU in between; for
CorrBCL, the first square bracket is for Patch correlation and the
second is for Displacement filtering. For all brackets, the first con-
volution layer uses kernel size (neighborhood size, 1) and the
remaining convolution layers use kernel size (1, 1), which is an-
other place we adopt factorization for convolutional kernels.

input points, while our HPLFlowNet takes relative positions
as input signals as well as the global coordinates.

The results are shown in Table 2. Our architecture out-
performs all the other methods on both metrics. The perfor-
mance gap between Ours and No Rel. Pos. under the 35m-

Table 3: Evaluation results measured on all the points of KITTI
without point subsampling and without depth thresholding. The
robust performance of our methods under this setting further
demonstrates its capacity on large-scale point clouds and gener-
alization ability.

Method EPE3D EPE2D

FlowNet3 [3] 1.4787 4.4571

ICP [2] 0.4791 23.1040
Ours 0.1209 4.1101

depth-threshold setting is 0.0804 vs. 0.0989, while the gap
increases significantly under the no-depth-threshold setting
to 0.1365 vs. 1.5768. Recall that the only difference be-
tween Ours and No Rel. Pos. is whether to concatenate
input signals with relative positions at each DownBCL and
UpBCL, so this results prove that by adopting such design,
our model attains certain extent of translational invariance.
Since FlowNet3D only uses relative positions as input sig-
nals, its performance does not decrease greatly. The perfor-
mance of FlowNet3 on 3D metrics decreases. One reason is
that under the 35m-depth-threshold setting, we remove the
points with predicted depth > 35m for FlowNet3 to avoid
extreme errors, we cannot use this scheme under the no-
depth-threshold setting (we only do the removing extreme
operation for FlowNet3). Since more background points are
included, and optical flows for faraway background pixels
are usually small and easy to predict, it has better EPE2D.

Results on all the points of KITTI, without point sub-
sampling and depth thresholding. By using our newly
proposed DownBCLs, UpBCLs and CorrBCLs, our method
is able to process a pair of complete KITTI frames in one
pass without subsampling points. Since most baselines do
not have this property, we only report the performance of
ICP [2], FlowNet3 [3], and our method under this setting
in Table 3. The good performance of our method further
demonstrates its capacity on large-scale point clouds, which
is due to our hierarchical architecture on permutohedral lat-
tices of different scales. The good performance also shows
our generalization ability and a certain degree of transla-
tional invariance again.

Results on KITTI 200. Following [5], we evaluated on
all the 142 scenes in KITTI Scene Flow 2015 with publicly
available raw 3D point clouds. The reason that some raw
data are not included is “e.g., due to incomplete or noisy
tracklet annotations” according to KITTI. Nevertheless, we
present the evaluation results on all the 200 scenes in Ta-
ble 4 for reference purposes. From the table, we see that
all the methods have decreased performance, which shows
that the scenes without publicly available raw data are more



OUTPUT

BCL4_2 s=0.5 [64]

BCL2_1 s=2 [64]

BCL2_2 s=2 [64]

BCL1_1 s=3 [64]

BCL1_2 s=3 [64]

1x1 ConvNet1 [32,32,64]

BCL1_1

BCL1_2

1x1 ConvNet1

Rel. pos.

PC1 (n1 x df) PC2 (n2 x df)

BCL2_1

BCL2_2

Rel. pos.

BCL3_1 s=1 [64]

BCL3_2 s=1 [64]

BCL3_1

BCL3_2

CorrBCL1 s=1 
[32,32] [64,64]

CorrBCL2 s=0.5 
[32,32] [64,64]

BCL5_2

CorrBCL3 s=0.25 
[32,32] [64,64]

1x1 ConvNet2 [1024,512,3]

… denote input

Concatenated feature 64 * 12

Rel. pos.

BCL4_1 s=0.5 [64] BCL4_1

BCL4_2

Rel. pos.

BCL5_1 s=0.25 [64]

BCL5_2 s=0.25 [64]

BCL5_1

Rel. pos.

BCL6_2

CorrBCL4 s=0.125 
[32,32] [64,64]

BCL6_1 s=0.125 [64]

BCL6_2 s=0.125 [64]

BCL6_1

BCL7_2

CorrBCL5 s=0.0625 
[32,32] [64,64]

BCL7_1 s=0.0625 [64]

BCL7_2 s=0.0625 [64]

BCL7_1

Rel. pos.

Rel. pos.

Rel. pos.

Rel. pos.

Rel. pos.

Rel. pos.

Rel. pos.

Rel. pos.

Rel. pos.

(a) SPLATFlowNet

DownBCL4 s=0.5 [64]

DownBCL5 s=0.25 [64]

DownBCL4

DownBCL5

Rel. pos.

Rel. pos.

Rel. pos.

Rel. pos.

CorrBCL3 s=0.25

[32] [32]

DownBCL1 s=4 [64]

DownBCL2 s=2 [64]

DownBCL3 s=1 [64]

1x1 ConvNet1 [32,32,64]

DownBCL1

DownBCL2

DownBCL3

1x1 ConvNet1

Rel. pos.

Rel. pos.

Rel. pos.

Rel. pos.

Rel. pos.

Rel. pos.

PC1 (n1 x df) PC2 (n2 x df)

Rel. pos.

Rel. pos.

Rel. pos.

Rel. pos.

UpBCL5 s=0.25 [64]

UpBCL4 s=0.5 [64]

UpBCL3 s=1 [64]

UpBCL2 s=2 [64]

UpBCL1 s=4 [128]

1x1 ConvNet2 [1024,512,3]

OUTPUT … denote input

CorrBCL1 s=1 

[32] [32]

1x1 Conv [64,64,64]

CorrBCL2 s=0.5

[32] [32]

1x1 Conv [64,64,64]

1x1 Conv [64,64,64]

Rel. pos.

Rel. pos.

Rel. pos.

(b) Ours-shallow

Figure 2: Detailed architectures of SPLATFlowNet we use for comparison and Ours-shallow, a shallower and faster version of ours we use
to show the efficiency of our design. Though much shallower, Ours-shallow still outperforms SPLATFlowNet. Notations are the same as
Fig 1.

noisy. Ours still outperforms all the other methods on all
the metrics.

C. Additional qualitative results

We show additional qualitative results on the FlyingTh-
ings3D and KITTI datasets in Fig. 3 and Fig. 4 respec-
tively. The results on FlyingThings3D demonstrate that our
model is able to correctly predict scene flows for objects

with complicated geometry, fine details and large 3D mo-
tions. The qualitative results on KITTI illustrate that the
predicted flowed points preserve the patterns as the input
objects (cars), and our model makes correct predictions for
complicated objects like trees.



Table 4: Evaluation results on all the 200 KITTI scenes. Our
method outperforms all the other methods on both metrics, though
the data are more noisy.

Method EPE3D EPE2D

FlowNet3 [3] 0.6648 6.0822

ICP [2] 0.5930 32.5387
SPLATFlowNet 0.2386 9.4409
FlowNet3D [5] 0.2215 8.1638
Original BCL 0.2150 8.4043
Ours 0.1506 5.6234

D. Qualitative error analysis

Fig. 5 shows four typical errors in FlyingThings3D. In
Fig. 5a, our model correctly predicts the translation but fails
to predict the rotation. Predicting rotation is harder than
translation, since points for the same object have different
motions. In Fig. 5b, the model has worse performance when
there is a messy cluster of objects without clear bound-
aries. Such clusters are common in FlyingThings3D since
it is synthesized in a random way, but are less common in
real-world scenarios. In Fig. 5c, the objects are actually
two bicycles with different orientations. The seriously in-
complete shapes make the model prone to mistakes. There
is another common error in FlyingThings3D: when two or
more objects are very close to each other in the first frame
and have different motions. In Fig. 5d, the table (it is in-
complete as well) at the upper left corner touches the shelf.
The table flies to an upper position and the shelf flies to a
lower position, which explains the prediction errors around
the junction of the two objects: the model regards the two
bordering objects as a single object and thus predicts incor-
rectly. Fig. 5e, 5f show the predicted flowed points and the
ground truth flowed points from a different view point for
better illustration.

Fig. 6 shows several common error patterns in KITTI.
Since we remove the ground by height, remaining ground
points have irregular patterns, and thus their motions are
hard to predict, as shown in Fig. 6a. Fig. 6b shows the
confusion errors for neighboring objects. Fig. 6c shows
a unique error type for KITTI, our approach sometimes
fails to make correct estimations on large-area messy bushes
with large motions, since there are almost no such bushes in
FlyingThings3D, the dataset the model is trained on.

E. Clarifications

Though the settings are different in different papers, we
train and evaluate all the comparison methods on the same
set of points and under the same setting, so the compar-
isons are fair, except for FlowNet3 [3], which use stereo in-
puts with RGB information and is not directly comparable
to ours (reference purposes only).

Preprocessing. Current data filtering follows existing
works and makes results more comparable. Besides, for
FlyingThings3D, we evaluate on test set without hard sam-
ple removal or without removing occluded points (we do
not remove occlusions for KITTI since it is the version that
KITTI uses for ranking. However, the occlusion in the syn-
thetic dataset is very different from real-world point clouds:
all occluded points are there), the results are similar to cur-
rent results.

Why scene flow estimation with stereo inputs does not
perform well on 3D metrics? For scene flow estimation
with stereo inputs, to reconstruct the 3D motions from the
estimated optical flows and disparities, the transformation
procedure is: 1) The depths of both frames are computed
using the following formula: depth = focal length ∗
baseline/disparity. When disparities are small, the mul-
tiplicative inversion magnifies small errors of the disparity
estimation. 2) The depths of the second frame are warped
to the reference frame (the first frame) by the estimated op-
tical flows. If the optical flow is not correctly predicted,
then the warped depth would be wrong. 3) The flowed pixel
positions and warped depths are reconstructed into 3D co-
ordinates with the camera matrix, and finally scene flow is
estimated. At this step, the errors at different depths are
changed differently. With errors accumulated through the
three steps and without directly optimizing on 3D evalua-
tion metrics, methods with stereo inputs do not perform as
well on 3D metrics as they perform on optical flow and dis-
parity metrics.

References
[1] A.B. Adams. High-dimensional gaussian filtering for compu-

tational photography. PhD thesis, Stanford University, 2011.
2

[2] P.J. Besl and N.D. McKay. Method for registration of 3-d
shapes. In Sensor Fusion IV: Control Paradigms and Data
Structures, 1992. 1, 2, 4

[3] E. Ilg, T. Saikia, M. Keuper, and T. Brox. Occlusions, motion
and depth boundaries with a generic network for disparity, op-
tical flow or scene flow estimation. In ECCV, 2018. 1, 2, 4

[4] D.P. Kingma and J. Ba. Adam: A method for stochastic opti-
mization. In ICLR, 2015. 1

[5] X. Liu, C.R. Qi, and L.J. Guibas. Learning scene flow in 3d
point clouds. arXiv:1806.01411v1, 2018. 1, 2, 4

[6] M. Menze, C. Heipke, and A. Geiger. Joint 3d estimation of
vehicles and scene flow. In ISPRS Annals of Photogrammetry,
Remote Sensing & Spatial Information Sciences, 2015. 1

[7] M. Menze, C. Heipke, and A. Geiger. Object scene flow. IS-
PRS Journal of Photogrammetry and Remote Sensing (JPRS),
2018. 1



(a) FlyingThings3D 0001075, EPE3D=0.0875.

(b) FlyingThings3D 0001286, EPE3D=0.0514.

(c) FlyingThings3D 0001540, EPE3D=0.0366.

(d) FlyingThings3D 0003588, EPE3D=0.0394.

Figure 3: Visualization on FlyingThings3D. Left is the RGB image for the first frame, and right is the point cloud visualization: Blue
points are PC1, green points are correctly predicted (measured by Acc3D Relax) flowed points PC1 + ŝf , and red points are ground-truth
flowed points PC1 + sf which are not correctly predicted. We also report the EPE3D for each pair of frames.



(a) KITTI 000086 10/000086 11, EPE3D=0.0449.

(b) KITTI 000133 10/000133 11, EPE3D=0.0641.

(c) KITTI 000137 10/000137 11, EPE3D=0.0364.

(d) KITTI 000106 10/000106 11, EPE3D=0.1389.

Figure 4: Visualization on KITTI. Left is the RGB pair for the two consecutive frames. The point cloud visualization scheme is the same
as Fig. 3.



(a) Large rotation (b) Messy cluster (c) Incomplete shapes

(d) Confusion errors for neighboring objects (e) Predicted flowed points for Fig. 5d (f) Ground truth flowed points for Fig. 5d

Figure 5: Typical error types for FlyingThings3D. The visualization scheme is different from the previous ones: We plot PC1 in blue, ALL
the predicted flowed points PC1 + ŝf in green, and ALL the ground-truth flowed points PC1 + sf in red. For Fig. 5c, we additionally plot
the error vectors in yellow for better illustration.

(a) Scattering ground points (b) Confusion errors for neighboring objects (c) Messy bushes

Figure 6: Typical error types for KITTI. We use the same visualization scheme as Fig. 5.


