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Appendix A. Structural flaws

Figure 1 of this supplementary material reproduces Figure 1 of the original
paper to help the following discussion. This figure illustrates the configuration
of visual classes of the standard test splits within the Wordnet hierarchy. It
should be noted that the 2-hops test split is a super-set of the 1-hop split: it
contains both classes annotated in green and blue. Similarly, the all test split is
a super-set of the 2-hops test split: it contains all blue, green and black classes.
In the generalized ZSL setting, training classes (red) are also included in the
test set.

Figure 1: Illustration of the standard test splits configuration.

Figure 2 and 3 illustrate the distribution of ZSL classification outputs on the
2-hops and all test splits respectively. On the 2-hops standard ZSL test set, 3.6%
of test images were correctly classified by the Linear baseline model. This ratio
corresponds to the percentage of images of Raptor correctly classified as Raptor,
Buzzard images classified as Buzzard, etc. We refer to such classification outputs
as True Positive (TP). These correspond to the accuracy reported by previous
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works on the standard benchmark. 2.3% of test images were classified as one of
their parent class: These correspond to images of Buzzard or Hawk classified as
Raptor or Bird for example. These classification outputs are considered as errors
by the current benchmark, while they are semantically correct: a Hawk is just a
specific kind of Bird. 3.7% of test images were classified as one of their children
class: images of Raptor or Bird classified as Buzzard or Hawk. Such classification
outputs are considered as errors by the current benchmark, whereas they may
be either semantically correct or incorrect depending on the specific kind of bird
in the image. We refer to both of these classification scenarios as False Negative
(FN). On the other hand, an image of Buzzard classified as Aegypiidae is an
actual classification error: Buzzard and Aegypiidae are two distinct, mutually
exclusive concepts. We refer to such classification errors as True Negatives (TN).

Figure 2: Distribution of classification outputs on the 2-hops test split.

Table 1 summarizes the ratio of false negative per true positive on each of the
standard test split: ratio = FN/TP . This table shows two interesting trends:
First, as noted in the original paper, the ratio is much higher in the Generalized
ZSL setting. This is due to the fact that ZSL models tend to classify test images
as their parent or children training class. Second, in the standard ZSL setting,
the ratio tends to increase with larger test sets: the GCN model ratios are 2.3,
3.8 and 4.1 on the 1-hop, 2-hops and all test splits respectively. We believe this
is due to larger overlaps within the Wordnet hierarchy: In the 1-hop test set, the
only FN classes for Cathartid images is Raptor. In the 2-hops test set, Buzzard,
Condor, Raptor and Bird are all FN classification outputs for Cathartid images.
This trend, however, does not hold for the Linear model in the Generalized ZSL
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Figure 3: Distribution of classification outputs on the all test split.

setting.

Table 1: Ratio of false negatives (FN) per true positives (TP).
1-hop 2-hops all

Model Task TP FN ratio TP FN. ratio TP FN ratio

Linear
ZSL 14.7 10.2 0.7 3.6 6.0 1.7 1.6 2.8 1.7

GZSL 1.9 39.2 20.6 0.8 10.23 12.7 0.4 4.27 10.7

GCN
ZSL 21.8 18.6 0.8 4.4 7.6 1.7 1.8 3.6 2.0

GZSL 10.3 34.2 2.3 2.6 10.0 3.8 1.1 4.5 4.1

Appendix B. Word embeddings

Occurrence frequency

We used the full English Wikipedia corpus to estimate the occurrence frequency
of words: we scanned the Wikipedia corpus to count the occurrence of each
visual class labels (Hawk, Raptor or Aegypiidae, etc.). We use these occurrence
counts as a measure to identify rare and common words. Figure 4 represents
the cumulative distribution of visual class label occurrence counts.

As shown in this figure, 24% of Imagenet class labels occur less than 10 times
in the full Wikipedia corpus. 45% of Imagenet class labels occur less than 100
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Figure 4: Word occurrence cumulative distribution. The x axis is in logarithmic
scale.

times. We found that fine-grain animal species, in particular, exhibit rare word
labels (see Figure 1). We expect the word embedding of such classes to provide
noisy semantic representations, which has been confirmed by the experiments
presented in the original paper.

Polysemy

Figure 5: Illustration of two Wordnet concepts sharing the same label Queen.

Figure 9 illustrates several polysemous visual classes of the Imagenet dataset.
To deal with polysemy, we want to assign a unique visual class to polysemous
words. To do so, we define a similarity score s(w, c) between words w and their
visual classes c. Given a polysemous word w, we assign w to its visual class c
of highest similarity score:

s : W × C → R (1a)

c∗ = argmaxc∈Cs(w, c) (1b)

As a similarity score, we use the cosine similarity between word embeddings
and the average word embedding of visual class parent and children concepts.
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Consider the example of the word Queen illustrated in Figure 5. There are
9 visual classes associated with the word Queen in the Imagenet dataset. For
brievity, we only consider two of the Queen visual classes: one as an Aristocrat,
and one as a chesspiece The similarity score between Queen and its Aristocrat
visual class is given by:

s(c, w) = cos(wQueen,×(wAristocrat + wFemale + wEngland)/3) (2a)

s(c, w) = 0.23 (2b)

The similarity score between Queen and its Chess visual class is given by:

s(c, w) = cos(wQueen, wChessman) (3a)

s(c, w) = −0.04 (3b)

So we assign the word Queen to the visual class of highest similarity score:
The one corresponding to the Aristocrat meaning.

Appendix C. Visual samples

Class-wise selection

Xian et al. [1] have proposed different test splits based on visual class sample
populations. They conjecture that small population classes correspond to fine-
grained visual concepts, while large population classes correspond to coarse-
grained concepts. Manually inspecting each of these visual classes, we found
many fine-grain concepts to have large image sample populations while many
coarse grain concepts have small sample populations. As a measure of the
”granularity” of visual classes, we propose to use their distance to the root
node within the Wordnet hierarchy. Fine-grain classes are lower in the Wordnet
hierarchy, hence further away from the root node than coarse-grain classes.

Figure 6 shows the average sample population of visual classes with respect
to their distance to the root node in the Wordnet hierarchy. Visual classes within
6 hops of the root node have an average sample population of 490 images. Visual
classes within 10 hops of the root node have an average sample population of
700 images. This figure illustrates no clear correlation between visual class
granularity and their sample population. In contrast, we found that many low
sample population classes instead correspond to visually ambiguous concepts,
as illustrated in Figure 10. Hence, we remove low sample population classes
from our proposed benchmark to avoid visually ambiguous concepts.

Sample-wise selection process

We define high-quality image samples as images that can be correctly classified
by a supervised model on a non-ZSL classification task. We propose a simple
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Figure 6: Average sample population per visual class with respect to their
”granularity”.

procedure to select such image samples. Given a set of labeled samples X =
{(x, c)}, our procedure returns a subset X ′ ⊂ X of high-quality images. This
selection process is formalized in Algorithm 1, and proceeds as follows:

First, we randomly sample subsets of 1000 visual classes C ′ ⊂ C from the
full Imagenet dataset. Classes are sampled so as to contain no overlap in the
Wordnet hierarchy: random splits C ′ do not contain both parent and their
children classes.

Second, we randomly sample 250 images per class as training samples, and
use the remaining images as test samples. We fine-tune the last layer of a pre-
trained Resent-50 on the set of training samples, and evaluate the classification
output of the model on the test samples.

We consider correctly classified image samples as high-quality test samples
for our benchmark and discard the incorrectly classified images. We repeat this
operation until all samples x ∈ X have been evaluated. The output X ′ of this
procedure is a subset of high-quality image samples that were correctly classified
by the model.
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Input:
Imagenet Dataset: X = {(x, c) ∈ R3×h×w × C}
ILSVRC-pretrained ResNet: BaseModel : R3×h×w → C
Output:
High-quality Imagenet subset: X ′ ⊂ X
Init:
Initialize an empty error set Err = ∅ and accurate set: Acc = ∅
while Err ∪Acc 6= X do

C ′ = SampleClass(C, 1000)
XC′ = {(x, c)|c ∈ C ′}
Xtrain, Xtest = SampleSplit(XC′ , 250)
Model = FineTune(BaseModel,Xtrain)
for ( (x, c) ∈ Xtest ) {

if Model(x) == c then
Acc = Acc ∪ {(x, c)}

else
Err = Err ∪ {(x, c)}

end

}
end
X ′ = Acc
end

Algorithm 1: Sample-wise selection procedure. SampleSplit(C, n) is a
sampling procedure that returns a subset C ′ of n non-overlapping classes
(i.e.; no children classes and their parents are contained in C ′) from the class
set C. SampleSplit(X,n) is a sampling procedure that returns a training set
Xtrain of n training samples for each class in X, and the remaining samples
as a test set Xtest. FineTune(M,X) is a procedure that fine-tunes a model
M on the input training set X.

Appendix D. Standard benchmark summary

Figure 6 of the main paper summarizes the impact of visual, semantic and
structural flaws on the top-1 accuracy of the 1-hop test split.

In these plots, the accuracy score (in green) corresponds to the model ac-
curacy as reported by the standard benchmark. The model error (in orange),
represents the classification errors after removing ambiguous images, semantic
samples, and structural flaws. For example, the error rate of the GCN model
on the generalized setting drops from 90% to 47%. In order to estimate the
impact of all three individual factors individually, we ran a set of 23 = 8 ex-
periments with all possible configurations: with or without considering visual
sample quality, semantic sample quality, and structural flaws. The estimated
impact reported for each factor corresponds to the mean improvement in clas-
sification accuracy brought by this specific factor within all the other factors
configuration. Figure 7 and 8 of this supplementary material report similar
analysis on the top-1 accuracy of the 2-hops and all test splits respectively.
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Figure 7: Estimation of the impact of different factors on the reported error of
existing models on the 2-hops test split.

Appendix E. Trivial solution

To apply the trivial solution of the toy example to the standard benchmark,
we need a similarity mapping f between training and test classes. To define
such mapping, we used the shortest path length between nodes of the Wordnet
hierarchy as a measure of distance d. We assign to test classes the semantic
embedding of their closest training class, as formalized in equations (4.):

f : Cte → Ctr (4a)

f : c→ argminc′∈Ctrd(c, c′) (4b)

yc = yf(c) + e, ∀c ∈ Cte (4c)

However, this procedure leads to many test classes sharing the exact same
semantic representations. Consider the example of Cathartid and Aegypiidae
classes in Figure 1. Both classes are closest to the Vulture training classes so
they share the same semantic vector yV oluture This leads to undefined behaviors
in the classification process. To differentiate between such classes, we add a
small Gaussian noise e to the semantic embeddings of test classes, following
equation (4c).

The trivial solution can be implemented by any existing ZSL model using
these semantic embeddings. The results reported in the original paper were
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Figure 8: Estimation of the impact of different factors on the reported error of
existing models on the all test split

computed using the Linear baseline.

Appendix F. Dataset construction

Additional considerations

A number of additional factors were taken into consideration in the construction
of our proposed benchmark. For space constraints, we could not include these
considerations in the original paper, so we briefly present them in this Appendix.

Sample population: The number of images per test class in the standard
benchmark’s test splits is very uneven. Some test classes have as little as one
sample image, while some classes have thousands of images. This leads to highly
biased evaluations as test classes of high sample population have a larger impact
on the reported classification accuracy. We select 100 quality samples for each
test class to ensure an evenly distributed test set.

Mutual exclusion: To prevent false negative classification outputs, test
classes should be mutually exclusive. The hierarchical structure of Wordnet
allows us to automatically create test splits that do not include both parent
and test classes, so we can automatically remove such mutually non-exclusive
classes from the test sets. However, this is not sufficient to guarantee the mutual
exclusivity of test classes. For example, the Imagenet dataset includes classes
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such as Man, Woman, White Person, or Engineer. We do not want to include
such kinds of classes in our benchmark because classifying an image of Woman
as White Person or Engineer would result in false negative outputs. These
classes, although not directly related to each other in the Wordnet hierarchy,
are not mutually exclusive. The Wordnet hierarchy does not provide the logical
constructs to automatically detect such instances, so we manually inspect the
set of candidate test classes and remove them from the test set.

Scale considerations: We favor images of generic objects captured at the
scale of human perceptions: we remove classes of images taken at microscopic
scale (biological cells, bacteria, etc.), or classes of images at astronomical scales
(supernova).

Shape considerations: We favor objects that can be recognized by their
characteristic shape and remove classes that require reading comprehension to
identify. For example, we remove a number of medicines, such as V itaminD or
branded contents like Pepsi Cola. Figure 11 illustrates a few such classes.

Dataset construction Summary

Table 2 summarizes the different steps of the creation of our benchmark. It
details the level of automation, the different parameters involved in each step,
as well as the approximate ratio of visual classes selected within each of these
steps.

Table 2: Summary of the benchmark construction steps
Step Automation Parameters Filter ratio

Semantic
Frequency Auto f > 500 82%
Polysemy Auto - 91%

Visual

Class-wise Auto n > 300 63%
Sample-wise Auto nC = 1000, ntr = 250 100%

Shape Manual - 95-99%
Scale Manual - 99%

Structural
Hierarchy Auto - 82%

Mutual Exclusivity Manual - 95-99%

The majority of the visual classes filtered out from our benchmark were au-
tomatically discarded based on their weak semantic features, low sample pop-
ulation or structural constraints to avoid both parents and children classes be
included in the test set. Only the semantic and visual sample selection steps
are parameterized. We select word labels occurring at least 500 times within
the Wikipedia corpus to avoid rare words. We only select visual classes with a
sample population superior to 300 images.
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Appendix G. Code & Data

The full Imagenet dataset, as considered in the all test split consists of over
13 million images, which is very time-consuming to download and process. In
contrast, small-scale benchmarks like AwA, CUB or SUN come with off-the-
shelf semantic and visual features. Furthermore, they are orders of magnitude
smaller than the Imagenet dataset which makes it much easier for researchers
to evaluate their models on. As a result, many recent works on ZSL have only
reported the evaluation of their models on small-scale benchmarks, instead of
the standard Imagenet benchmark.

To encourage researchers working on ZSL to evaluate their model on our
proposed benchmark, we release pretrained semantic and visual features1. The
dataset is small enough to fit in the memory of most modern computer hardware
so it allows for fast prototyping and evaluation. To work on the original raw
images, we provide the URL of test images with a Python script for download.

In addition to this data, we also provide code for visual class selection and
fast manipulation of the Wordnet hierarchy. This should allow researchers inter-
ested in the investigation of different factors impacting ZSL accuracy to quickly
build different test splits.
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1Download instructions are available at https://github.com/TristHas/GOZ
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Figure 9: Examples of polysemous classes
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Figure 10: Examples of low sample population, visually ambiguous classes.
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Figure 11: Examples of manually discarded classes. Cell and Supernova corre-
spond to microscopic and astronomic scale images. Vitamin D, Vitamin C, and
Pepsi were discarded as they require reading comprehension to identify.
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