
It’s not about the Journey; It’s about the Destination:

Following Soft Paths under Question-Guidance for Visual Reasoning

Supplemental Material

Monica Haurilet Alina Roitberg Rainer Stiefelhagen

Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany

{haurilet, alina.roitberg, rainer.stiefelhagen}@kit.edu

1. Configuration Details

In this section, we provide more details for implementing

our model, as well as further learning procedure specifics.

Question-based Guide. For better comparability on the

AI2D dataset, we employ the same input representation

as related work [8, 9], i.e. GloVe [13] features pre-trained

on 6B tokens from Wikipedia. As previous work [8, 9]

uses LSTMs for embedding the question sentence, we also

use a single-layered LSTM with 256 hidden units for our

question-based guide. The final representation of the ques-

tion is set as the last hidden state of the LSTM.

For CLEVR and COG, we experienced LSTM conver-

gence instabilities linked to significantly longer sentences

(over 15 tokens). This LSTM-related issue was previously

reported by others [5]. However, various works show strong

potential of using 1-D convolutions instead of recurrent

neural networks. Such convolution-based models often-

times exceed the accuracy of LSTMs, while having a more

stable learning procedure [1, 3, 2]. We therefore opt to em-

bed the questions using 1-D convolutions with an attention

module.

The question-based guide embeds the question words

represented as one-hot vectors using a 1D convolutional

neural network with self-attention. We use six convolution

layers (with 32 output filters of size 3, stride 1) each with

zero padding and ReLU activation. In case of COG and

CLEVR, we do not share weights between the guides for

each question type, however the structure of each guide is

identical. Finally, we obtain the attention module with a

further 1D convolution and a sigmoid non-linearity. Even

though softmax is the widespread way to normalize an at-

tention module, sigmoid has the benefit of weighting in-

dividual elements (i.e. words) independently of their total

amount. Our goal is that e.g. the word ‘sphere’ is weighted

in the same way in both ‘How many spheres are there?’ and

‘How many green spheres are there?’. This would not be

the case for softmax, as softmax would give both ‘sphere’

and ‘green’ a high weight and thus, sphere would automat-

ically have a smaller weight as it has to share the amount

with green after the normalization. In the final layer, the

number of hidden units corresponds to the maximal path

length T (i.e. we get a different attention map for each step

t in the path). The final representation of traversal direc-

tions for each t ∈ {1, . . . , T} is therefore a weighted sum

of the words in the question based on the weights obtained

from these attention maps.

Visual Graph. As previously mentioned, we use GloVe

features for representing the words of each question in

AI2D. The same word embedding model is then used to rep-

resent each node in the graph, while the edges are set to 1

if the corresponding node pair is connected and 0 otherwise

(as done in previous work on AI2D [9]). For CLEVR and

COG, we employ one-hot encodings for the nodes, where

we specify the shape, color, material, size and frame num-

ber (in case of the COG video dataset) for each object in-

stance. The edges are defined as a directed relation rep-

resentation of the source-target node pair, which consists

of location information, whether the linked nodes share the

same properties or not, as well as the target node embed-

ding. Including the target node in the edge representation is

very important, as we often do not only have to find nodes

that are e.g. left of an object, but we have to filter specific

targets e.g. green objects left of the source node.

In COG, the graphs for each image are included in the

dataset for both training and testing. This is, however, not

the case for CLEVR where the graphs are only available

for training. For the test set, we built the graph by making

use of an off-the-shelf object detector – an SSD [12] with

a ResNet152 [6] backbone provided by [7]. The produced

graphs have an overall accuracy of over 98% on the valida-

tion set, where the most common mistake is due to strongly

occluded objects in the image. We did not find any other

types of errors e.g. missing edges or including too many

nodes in the graph. Such ‘imperfect’ graphs however cause

only a small drop in performance of around 0.4% on the val-



idation set in the VQA task. We make the predicted graphs

publicly available to foster further research in graph-based

VQA on the CLEVR dataset.

Graph Traveler. The graph-traveler uses the direction

embeddings produced by the guide to traverse the graph in

search of the destination nodes. To obtain the confidence

τ t(n) for each time step t and node n being in the path, we

concatenate each node for t = 1 and edge for t > 1 with

the direction embeddings, followed by two fully connected

layers. The first layer has a size of 256 and ReLU activa-

tion, while the second layer is a single hidden unit repre-

senting the confidence of the starting nodes and transition

probabilities, respectively. As we constrain τ t(n) to be in

the interval [0, 1], we use either sigmoid (for counting and

existence tasks) or softmax (for other tasks) for confidence

normalization. The nonlinearities are both applied on either

the starting nodes i.e. τ1(n) or on each edge between each

node pair. In case of sigmoid normalization, we replace the

sum operation of Equation 5 with the maximum function

applied on the input edge confidences, in order to hold the

premise of τ t(n) ≤ 1.

Prediction Module. Visual reasoning datasets cover a

variety of task formats (e.g. counting, diagram question-

answering) and therefore differ greatly in their solution

modes (e.g. multiple choice vs. free result format), which

should be taken into account in the prediction module out-

put. Since AI2D is a dataset in a multiple-choice setting,

we need to input the multiple choice answers to the model.

As an input to our prediction module, we concatenate each

of the possible multiple-choice answers with the final rep-

resentation of the question and of the destination node indi-

vidually. This is followed by two fully connected layers,

with the last layer containing a single hidden unit corre-

sponding to the confidence of the current answer being the

correct one.

COG and CLEVR are both open-ended datasets, and

thus we obtain the final prediction by using the set of all

possible answers in the test set i.e. the prediction module

consists of a fully-connected layer with the number of hid-

den units equal to the number all of possible answers across

all tasks. However, for COG we use two different streams

in the same way as related work [15] for each answer type:

pointing to an object in the graph and other type of answers

in text format (e.g. yes, circle, red). In case of pointing ques-

tions, the prediction module consists of a fully connected

layer with a single hidden unit for each node in the graph,

which are normalized using softmax (i.e. sum over all nodes

will equal to one). The other type of answers have either are

yes/no or attribute-based ones. As we previously specified,

for yes and no answers, we use sigmoid activation for the

soft paths, while for the attribute-based questions we make

use of softmax.

In case of CLEVR, we have five different types of ques-

tions, where we use sigmoid in all counting related tasks

(exist, count and compare numbers) and softmax otherwise

(query attributes and compare attributes). The prediction

modules of softmax related tasks consist of a simple fully

connected layer with the number of hidden units equal to

the number of possible answers in the training set. This

final layer is also using a softmax normalization over the

answers present in the training set. In case of the sigmoid-

based tasks, we make use of a greedy procedure (common

in reinforcement learning) in combination with the cross en-

tropy loss. For example, in case of exist question, we use the

neuron with the (currently) highest activation of the nodes

in the final step T in the loss as the prediction, while as the

target we use 0 if the correct answer is no, otherwise we in-

put a 1. During the test phase we predict a ‘yes’ if any of

the nodes have a final confidence of over 0.5, otherwise the

model outputs a ‘no’. In case of counting, we use the cross

entropy loss over the confidences in time step T as the pre-

diction. For a ground truth answer k, we assign as the target

a vector that has the same size as the number of nodes in the

graph. In this vector we set a 1 if the particular node value is

in the top-k highest confidence in the prediction (i.e. confi-

dence in step T ), otherwise the particular value in the target

vector is set to 0. In the test phase, we count the number of

activations that have a higher value than 0.5.

Optimization. Except for the weights of the pre-trained

GloVe model in AI2D, all weights are initialized randomly

following the Xavier initialization [4]. Biases are initial-

ized with zeros. Network weights are optimized using

ADAM [10] with an initial learning rate of 0.00025. For

other parameters, we use default values of TensorFlow: 0.9
for the exponential decay rate for the first moment estimates

β1 and 0.999 for the second one β2. The small initial learn-

ing rate is common for graph neural networks (e.g. [14]) as

larger ones often cause convergence instabilities. The mod-

els are trained at most 30 epochs using early stopping with

the validation set performance as an indicator. All models

are implemented from scratch in TensorFlow.

Zero-Shot Setting. In our zero-shot setting, we train solely

on one task e.g. exist questions and evaluate on a differ-

ent task e.g. counting task. We make use of the different

heads in the prediction module and switch them between

the source and target task.

Computational Complexity. For each step, we have a

computational complexity of O(E) where E is the number

of edges. Note that this is also the case for e.g. graph con-

volutions [11]. The training time for 30 epochs on a single

GeForce GTX 1080 Ti is 1 hour for the AI2D and 20 hours

for the CLEVR image datasets and 100 hours for the COG

video dataset.



Best viewed in color.

Step 1 There is a tiny rubber thing that is

right of the matte cube; are there any yellow

cubes in front of it?

Step 2 There is a tiny rubber thing that is

right of the matte cube; are there any yellow

cubes in front of it?

Step 3 There is a tiny rubber thing that is right

of the matte cube; are there any yellow cubes

in front of it? Answer: yes X

Figure 1: Existence question with a necessary reasoning chain length of three.

Step 1 Are there any small cyan objects on the

left side of the yellow object?

Step 2 Are there any small cyan objects on the

left side of the yellow object?

Step 3 Are there any small cyan objects on

the left side of the yellow object?

Answer: yes X

Figure 2: Existence question with a necessary reasoning chain length of two and a single found destination.

Step 1 Is there a big blue metal thing that is be-

hind the rubber object behind the blue shiny

object?

Step 2 Is there a big blue metal thing that is be-

hind the rubber object behind the blue shiny

object?

Step 3 Is there a big blue metal thing that is

behind the rubber object behind the blue shiny

object? Answer: no X

Figure 3: Example of question about the existence of an object where the correct answer is ‘no’.

Step 1 Are there any tiny objects in front of

the purple rubber object?

Step 2 Are there any tiny objects in front of

the purple rubber object?

Step 3 Are there any tiny objects in front of

the purple rubber object?

Answer: yes X

Figure 4: Question about existence with multiple found destinations.



Step 1 How many cubes are there? Step 2 How many cubes are there? Step 3 How many cubes are there?

Answer: 2 X

Figure 5: Counting task with a necessary reasoning chain length of one. The model handles the fixed maximum path length

of T = 3 through self-loops and correctly finds two objects.

Step 1 What number of other things are the

same color as the small matte ball?

Step 2 What number of other things are the

same color as the small matte ball?

Step 3 What number of other things are the

same color as the small matte ball?

Answer: 3 X

Figure 6: Counting question with a necessary path length of two. The model was able to find all three destinations.

Step 1 Are there any big green things that are

in front of the large metal object that is on the

left side of the gray thing?

Step 2 Are there any big green things that are

in front of the large metal object that is on the

left side of the gray thing?

Step 3 Are there any big green things that are

in front of the large metal object that is on the

left side of the gray thing? Answer: no ✗

Figure 7: Example of an incorrectly answered question. Since the large metal object left of the starting node was not found in

the second step (computed confidence of 0.3 below our threshold of 0.5), the model also did not find any destination nodes.

Step 1 How many matte things are on the left

side of the blue thing on the left side of the

large blue metal thing?

Step 2 How many matte things are on the left

side of the blue thing on the left side of the

large blue metal thing?

Step 3 How many matte things are on the

left side of the blue thing on the left side of the

large blue metal thing? Answer: 3 ✗

Figure 8: Due to an incorrect self-loop in the second step, presumably retained because the object satisfies one of the

conditions of the next step (it is blue), the answer for the counting question was higher than required (correct answer is 2).



2. Additional Qualitative Results

We analyze the soft paths produced by our model in case

of correct and incorrect answers. Figures 1-8 provide ex-

amples for maximum path length T = 3, with each col-

umn illustrating the state at step t. White circle markings

depict the nodes with low confidence of being visited by

the traveler in the current step t. Orange markings depict

high probability nodes and the arrows mark a high transi-

tion confidence (> 0.5). Underneath each image, we high-

light the question words which received high attention val-

ues (> 0.5) of the visual guide for the current path section.

Correct predictions. Figures 1-4 show a variety of the

existence task queries, which were correctly handled. In the

first example (Figure 1), the number of required reasoning

steps corresponds to the maximum path length T and our

model easily finds the path leading to the correct destina-

tion. The next example (Figure 2), on the other hand, only

requires two reasoning steps. This is not an issue in our

model for T > 2, as self-loops are permitted. The self-

loop is present in the second time step on only a single node

(the yellow sphere). This confirms, that the model leverages

object attributes for traversal, as only edges with a yellow

target have high transition confidence.

In case the query addresses a non-existent object (i.e. the

correct answer is ‘no’), our model does not have any high

confidence destination nodes, as illustrated in the Figure 3.

The traveler followed the correct path from the blue shiny

object to the rubber object behind it. However, there are

no other objects behind this rubber object, thus, there are

no final high confidence destination nodes. In comparison,

Figure 4 correctly found four destinations that are in front

of the purple rubber object as multiple objects fit the query.

Figures 5 and 6 visualize the paths produced for count-

ing. Both examples necessitate shorter reasoning chains

than our maximal path length (i.e. ‘How many cubes are

there?’ only requires a single reasoning step). The traveler

handles this successfully by visiting some nodes more than

once. Surprisingly, we observe different strategies for dif-

ferent lengths of the required reasoning chain. In case of the

path of length 1 (Figure 5) the traveler visits all nodes twice

and chooses the nodes of the type cube in the last step. For

a reasoning chain with two steps (Figure 6) a single source

node (the small matte ball) is selected in the first two steps.

Analysis of incorrect predictions. In Figures 7 and 8 we

analyze queries which were not answered correctly. In the

existence task example (Figure 7), the traveler was not able

to find the large metal object on the left side of the source

node, as it produced a confidence of 0.3 (our threshold was

0.5). Due to this deficit in an intermediate step, the traveler

did not reach the correct destination node (the big green ob-

ject) and is predicting the incorrect answer ‘no’.

Figure 8 is an example of counting, where our model

found one object more than necessary. First, the traveler

correctly chose the blue sphere as its starting point. Then,

the traveler should have moved to the blue object left of it,

as stated in the query. While our model did this transition,

it also wrongfully retained a self-loop to an object from the

previous step. We suppose, this relation was kept, as this

source object met one of the two conditions for the next

step: it is blue (but not left of itself, which is the second

condition). Finally, our model considers destinations left

of both, the small cylinder and the incorrectly visited blue

sphere, resulting in three counted objects, instead of two.

References

[1] S. Bai, J. Z. Kolter, and V. Koltun. An empirical evaluation

of generic convolutional and recurrent networks for sequence

modeling. arXiv, 2018.

[2] Y. N. Dauphin, A. Fan, M. Auli, and D. Grangier. Language

modeling with gated convolutional networks. arXiv, 2016.

[3] J. Gehring, M. Auli, D. Grangier, D. Yarats, and Y. N.

Dauphin. Convolutional sequence to sequence learning.

arXiv preprint arXiv:1705.03122, 2017.

[4] X. Glorot and Y. Bengio. Understanding the difficulty of

training deep feedforward neural networks. In Proceedings

of the thirteenth international conference on artificial intel-

ligence and statistics, pages 249–256, 2010.

[5] A. Graves, G. Wayne, and I. Danihelka. Neural turing ma-

chines. arXiv preprint arXiv:1410.5401, 2014.

[6] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In CVPR, 2016.

[7] J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara,

A. Fathi, I. Fischer, Z. Wojna, Y. Song, S. Guadarrama, et al.

Speed/accuracy trade-offs for modern convolutional object

detectors. In CVPR, pages 7310–7311, 2017.

[8] A. Kembhavi, M. Salvato, E. Kolve, M. Seo, H. Hajishirzi,

and A. Farhadi. A diagram is worth a dozen images. In

ECCV, 2016.

[9] D. Kim, Y. Yoo, J. Kim, S. Lee, and N. Kwak. Dynamic

graph generation network: Generating relational knowledge

from diagrams. CVPR, 2017.

[10] D. P. Kingma and J. Ba. Adam: A method for stochastic

optimization. arXiv preprint arXiv:1412.6980, 2014.

[11] T. N. Kipf and M. Welling. Semi-supervised classification

with graph convolutional networks. ICLR, 2017.

[12] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y.

Fu, and A. C. Berg. Ssd: Single shot multibox detector. In

ECCV, pages 21–37. Springer, 2016.

[13] J. Pennington, R. Socher, and C. Manning. Glove: Global

vectors for word representation. In EMNLP, pages 1532–

1543, 2014.

[14] A. Santoro, D. Raposo, D. G. Barrett, M. Malinowski,

R. Pascanu, P. Battaglia, and T. Lillicrap. A simple neural

network module for relational reasoning. In NIPS, 2017.

[15] G. R. Yang, I. Ganichev, X.-J. Wang, J. Shlens, and D. Sus-

sillo. A dataset and architecture for visual reasoning with a

working memory. ECCV, 2018.


