Supplement: Constrained Generative Adversarial Networks for Interactive Image Generation

Eric Heim Air Force Research Laboratory Information Directorate Rome, NY USA eric.heim.1@us.af.mil

1. Formal Definition of LSTM Component

Equation (4) is a standard LSTM cell:

$$LSTM (\mathbf{z}, \mathbf{q}_{t-1}^*) = \mathbf{o}_t * \tanh(\mathbf{h}_t), \text{ where}$$
$$\mathbf{o}_t = \sigma \left(\mathbf{w}_{\mathbf{o}} \cdot \left[\mathbf{q}_{t-1}^*, \mathbf{z} \right] + \mathbf{b}_{\mathbf{o}} \right)$$
$$\mathbf{h}_t = \mathbf{f}_t * \mathbf{h}_{t-1} + \mathbf{i}_t * \tilde{\mathbf{h}}_t$$
$$\mathbf{f}_t = \sigma \left(\mathbf{w}_{\mathbf{f}} \cdot \left[\mathbf{q}_{t-1}^*, \mathbf{z} \right] + \mathbf{b}_{\mathbf{f}} \right)$$
$$\mathbf{i}_t = \sigma \left(\mathbf{w}_{\mathbf{i}} \cdot \left[\mathbf{q}_{t-1}^*, \mathbf{z} \right] + \mathbf{b}_{\mathbf{i}} \right)$$
$$\tilde{\mathbf{h}}_t = \tanh\left(\mathbf{w}_{\tilde{\mathbf{h}}} \cdot \left[\mathbf{q}_{t-1}^*, \mathbf{z} \right] + \mathbf{b}_{\tilde{\mathbf{h}}} \right)$$

Here, z is used as what is commonly referred to as "input" to the LSTM, \mathbf{q}_{t-1}^* is commonly called the "hidden state" of the previous iteration, and LSTM returns the hidden state of the current iteration.

2. Neural Network Architectures used in Experiments

In this section, we outline the neural network architecture used in all experiments in the main paper, layer by layer. Rows of the network in descending order (top to bottom) indicate layers from input to ouput. The following naming conventions are used throuout. "Conv" indicates a convolutional layer, "FC" indicates a fully connected layer, and "TConv" indicates a transpose convolutional layer. The column labeled "Ker" indicates the kernel size, "Str" indicates stride, and "Act" indicates the activation function used. Columns labeled "In" and "Out" indicate the shape of the input to the layer and shape of the output of the layer.

2.1. MNIST Experiments

Below you will find architecture descriptions for the networks used in the MNIST experiments. Note that after each two convolutional or transpose convolutional layers in all networks, layer normalization is used.

ϕ Network (Encoder)									
Layer In Ker Str Act O									
Conv	32x32x1	3x3	1	ReLU	32x32x4				
Conv	32x32x4	3x3	2	ReLU	16x16x8				
Conv	16x16x8	3x3	2	ReLU	8x8x16				
Conv	8x8x16	3x3	2	ReLU	4x4x32				
Conv	4x4x32	3x3	2	ReLU	2x2x64				
FC	2x2x64			None	2				

	ϕ Network (Decoder)									
Layer	In	Ker	Str	Act	Out					
FC	2			None	2x2x64					
TConv	2x2x64	3x3	2	ReLU	4x4x32					
TConv	4x4x32	3x3	2	ReLU	8x8x16					
TConv	8x8x16	3x3	2	ReLU	16x16x8					
TConv	16x16x8	3x3	2	ReLU	32x32x4					
Conv	32x32x4	3x3	1	tanh	32x32x1					

Disc	Discriminator Network (WGAN and CONGAN)									
Layer	In Ker Str Act				Out					
Conv	32x32x1	3x3	1	ReLU	32x32x64					
Conv	32x32x64	3x3	2	ReLU	16x16x128					
Conv	16x16x128	3x3	2	ReLU	8x8x256					
Conv	8x8x256	3x3	2	ReLU	4x4x512					
FC	4x4x512			None	1					

	Read CNN									
Layer	In	Ker	Str	Act	Out					
Conv	32x32x1	5x5	1	ReLU	32x32x2					
Conv	32x32x2	5x5	2	ReLU	16x16x4					
Conv	16x16x4	5x5	2	ReLU	8x8x8					
Conv	8x8x8	5x5	2	ReLU	4x4x16					
Conv	4x4x16	5x5	2	ReLU	2x2x32					
FC	2x2x32			tanh	64					

CO	CONGAN Write Network/WGAN Generator									
Layer	In	Ker	Str	Act	Out					
FC	64			None	4x4x512					
TConv	4x4x512	3x3	2	ReLU	8x8x256					
Conv	8x8x256	3x3	1	ReLU	8x8x256					
TConv	8x8x256	3x3	2	ReLU	16x16x128					
Conv	16x16x128	3x3	1	ReLU	16x16x128					
TConv	16x16x128	3x3	2	ReLU	32x32x64					
Conv	32x32x64	3x3	1	tanh	32x32x1					

2.2. CelebA and Zappos50K Experiments

In this section, we first describe all network architectures used in both the CelebA and Zappos50K experiments. Then we outline the ϕ networks used for each. Here, "Norm" indicates layer norm, "ReLU" indicates the application of a rectified linear unit. The "ID" column is used to identify which layers are used in subsequent operations in the residual block. For the residual blocks, the "In" column is either used to indicate the size of the input or the IDs of the layers used as input. The "Add" layers are simply the addition of the two layers identified in the "In" column with the first ID multiplied by 0.3 before the addition. The "RB \uparrow " layer is a residual block down.

	Discriminator Network									
Layer	In	Ker	Str	Act	Out					
Conv	64x64x3	3x3	1	ReLU	64x64x64					
RB↓	64x64x64				32x32x128					
RB↓	32x32x128				16x16x256					
RB↓	16x16x256				8x8x512					
RB↓	8x8x512				4x4x512					
FC	4x4x512			None	1					

	Read CNN									
Layer	In	Ker	Str	Act	Out					
Conv	64x64x3	3x3	1	ReLU	64x64x8					
RB↓	64x64x8				32x32x16					
RB↓	32x32x16				16x16x32					
RB↓	RB↓ 16x16x32									
FC	8x8x32			tanh	1					

CC	CONGAN Write Network/WGAN Generator								
Layer	In	Ker	Str	Act	Out				
FC	128			ReLU	4x4x512				
RB↑	4x4x512				8x8x512				
RB↑	8x8x512				16x16x256				
RB↑	16x16x256				32x32x128				
RB↑	32x32x128				64x64x64				
Conv	64x64x64	3x3	1	tanh	64x64x3				

	Residual Block (Down)										
ID	Layer	In	Ker	Str	Act	Out					
1	Conv	axbxc	5x5	2	None	$\frac{a}{2}\mathbf{x}\frac{b}{2}\mathbf{x}d$					
2	Conv	axbxc	5x5	1	None	axbxc					
3	Norm	(2)									
4	ReLU	(3)									
5	Conv	(4)	5x5	2	None	$\frac{a}{2}\mathbf{x}\frac{b}{2}\mathbf{x}d$					
6	Add	(5), (1)									
7	Norm	(6)									
8	ReLU	(7)									

	Residual Block (Up)									
ID	Layer	In	Ker	Str	Act	Out				
1	TConv	axbxc	5x5	2	None	$(2*a)\mathbf{x}$ $(2*b)\mathbf{x}$ d				
2	Conv	axbxc	5x5	1	None	axbxc				
3	Norm	(2)								
4	ReLU	(3)								
5	TConv	(4)	5x5	2	None	$(2*a)\mathbf{x}$ $(2*b)\mathbf{x}$ d				
6	Add	(5), (1)								
7	Norm	(6)								
8	ReLU	(7)								

2.3. Celeba ϕ MCNN

The MCNN we developed for the ϕ network in our CelebA experiments takes an image, and puts it through a "base" network. Then the output of the base network is input to twelve"specialized" networks to predict the presence or absence of each of the twelve attributes we used in our experiment. Each of these architectures are outlined below.

ϕ MCNN Network (Base)									
Layer In Ker Str Act Out									
Conv	64x64x3	7x7	2	ReLU	32x32x64				
Conv	Conv 32x32x64 5x5 2 ReLU 16x16x12								
Norm	Norm								

	ϕ MCNN Network (Specialized)									
Layer	Layer In Ker Str Act Out									
Conv	16x16x128	3x3	2	ReLU	8x8x256					
Conv	8x8x256	3x3	2	ReLU	4x4x512					
Norm										
Conv	Conv 4x4x512 3x3 2 ReLU 2x2x1024									
FC	2x2x1024			sigm	1					

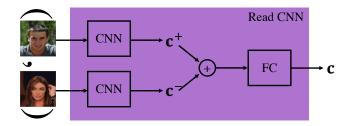


Figure 1: The read network to map a constraint to a vector.

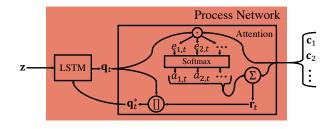


Figure 2: Illustration of the *t*th iteration of the process network, beginning with the LSTM unit and ending with q_t^* .

2.4. Zappos50K ϕ Triplet Network

A triplet network takes three images and puts them through the same network resulting in an n dimensional embedding for which standard triplet losses can be applied. Below describes the network we used in our Zappos50K experiments. Note that after each two convolutional layers, layer normalization is applied.

ϕ Triplet Network					
Layer	In	Ker	Str	Act	Out
Conv	64x64x3	5x5	1	ReLU	64x64x8
Conv	64x64x8	5x5	2	ReLU	32x32x8
Conv	32x32x8	5x5	1	ReLU	32x32x16
Conv	32x32x16	5x5	2	ReLU	16x16x16
Conv	16x16x16	5x5	1	ReLU	16x16x32
Conv	16x16x32	5x5	2	ReLU	8x8x32
Conv	8x8x32	5x5	1	ReLU	8x8x64
Conv	8x8x64	5x5	2	ReLU	4x4x64
FC	4x4x64			None	2

3. CelebA ϕ MCNN Training Details and Performance

For training the ϕ MCNN used in the CelebA data experiments, we chose twelve attributes for the network to predict. We used the Adam optimization method with default parameters, a batch size of 32, and trained the model for 100,000 iterations. The test accuracy of the network for the twelve attributes is shown in the table below. We note that these results are slightly worse than those reported in the original paper, but sufficient for the CONGAN generator to learn how to manipulate images. Performance can be increased by employing the "aux" method described in the original MCNN paper, and by designing the architecture to be take advantage of groups of common attributes.

Attribute	Accuracy		
Bald	0.9836		
Black Hair	0.8870		
Blond Hair	0.9414		
Brown Hair	0.8242		
Eyeglasses	0.9901		
Goatee	0.9531		
Gray Hair	0.9709		
Male	0.9760		
Mustache	0.9557		
No Beard	0.9360		
Pale Skin	0.9601		
Wearing Hat	0.9832		

4. Zappos50K ϕ Triplet Network Training Details and Performance

We formed the training set for the triplet network by first taking each image in the Zappos50K train set, and placed it into one of the 64 color histogram bins according their highest histogram value. To form each triplet (A, B, C) ("A is more similar to C than C"), we iterated over each bin j, selecting images A and B randomly from j, and image C randomly from another bin. We iterated over each bin 5000 times creating 320,000 triplets for training. We did a similar process for the test set, but with 1000 "passes" over each bin,, making a test set of 64,000 triplets.

We trained the network using default Adam optimization parameters and a batch size of 128. We found that loss leveled out around 25,000 steps and stopped optimization at that point. Upon convergence, the network was able to satisfy 94.504% of the test triplets. Figure 3 shows samples of the Zappos50K data set embedded in two dimensions using the ϕ triplet network.

Figure 3: Samples from the Zappos50K data set embedded using the ϕ triplet network.