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We start this supplementary by providing the proof of Theorem 1 from the main text. We repeat the theorem below for the
convenience of the reader.

Theorem 1. If the confusion function, g is a linear invertible transformation, Q with QQ−1 = Q−1Q = I ∈ Rd×d then
the proposed min-max statistical alignment by confusion is equivalent to statistical alignment by minimization. Here, d is the
dimensionality of both the domain input features.

Proof. Let, Σ0 and Σ1 be the covariance matrices for the domains D0 and D1,respectively. Similarly, consider the domain
means to be µ0 and µ1. Furthermore, let the feature confusion function, g be a linear transformation given by a square
invertible matrix,Q ∈ Rd×d. Hence, the confused feature means µ̃0 and µ̃1 for the two domains can be written as,

µ̃0 = QTµ0, and µ̃1 = QTµ1 (1)

Furthermore, the confused feature covariances Σ̃0 and Σ̃1 are given by,

Σ̃0 = QTΣ0Q, and Σ̃1 = QTΣ1Q. (2)

From this, the confused feature KL divergence , DKL(P̃0‖P̃0) can be computed as,
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1. Network structures
Here we provide details of our network models. For our UDA experiments on Office31 dataset, we use the pretrained

AlexNet [7] on ImageNet [1] and fine-tuned it accordingly. To obtain stable covariance matrices, we used an additional
dimensionality reduction layer between fc7 and fc8 layers of the AlexNet where the dimensionality is reduced to 256.
A similar modification to the AlexNet is used in prior work[2] for Office31 experiments. Table 1 provides details of the
structure of the network used in UDA experiments on MNIST, SVHN, SYN. DIGITS, SYN. SIGNS, GTSRB, STL and
CIFAR datasets. In Table 2 the details of the network models (f1 and g) used in our toy data experiment (see Fig.1 in the
main paper) are listed. Note that the feature extractor f0 is an identity mapping for this experiment. Lastly, in Table 3, we
report the details of the deep network models used in ZSL experiments.

Feature extractor (fs, ft)
1 32 x 32 x 3 Image
2 Instance Normalization
3 3 x 3 conv, 64 (96) filters, leaky-ReLU
4 3 x 3 conv, 64 (96) filters, leaky-ReLU
5 3 x 3 conv, 64 (96) filters, leaky-ReLU
6 2 x 2 max-pool, stride 2
7 dropout, keep prob. = 0.5
8 Gaussian noise
9 3 x 3 conv, 64 (192) filters, leaky-ReLU

10 3 x 3 conv, 64 (192) filters, leaky-ReLU
11 3 x 3 conv, 64 (192) filters, leaky-ReLU
12 2 x 2 max-pool, stride 2
13 dropout, keep prob. = 0.5
14 Gaussian noise

Classifier Network (h)
1 Input features
2 3 x 3 conv, 64 (192) filters, leaky-ReLU
3 3 x 3 conv, 64 (192) filters, leaky-ReLU
4 3 x 3 conv, 64 (192) filters, leaky-ReLU
5 global average pooling
6 10 (9) - fully connected

Confusion Network (g) - Residual Model
1 Input features
2 3 x 3 conv, 64 (192) filters
3 leaky-ReLU
4 global average pooling

Table 1. The network structures for the UDA ex-
periments on MNSIT, SVHN, SYN. DIGITS, SYN.
SIGNS, GTSRB, STL and CIFAR. The values within
parenthesis are used for the domain transformations
STL↔CIFAR. All leaky-ReLU layers use 0.1 as the
negative scale factor. The additive Gaussian noise lay-
ers use zero mean and a standard deviation of 0.0001.
We use Batch-normalization for all convolutional lay-
ers. As in Shu et al. [8], we use Instance Normaliza-
tion [10] at the input. Note that unlike the Office31 ex-
periments, the outputs of fs and ft are 8 × 8 feature
maps. Therefore, we use a convolutional network as
the confusion network, g.

Feature extractor (f1)
1 2 - dimensional input features
2 2 - fully connected, Tanh
3 2 - fully connected, Tanh

Confusion Network (g)
1 2 - dimensional input features
2 16 - fully connected, leaky - ReLU

Table 2. The network structures for the toy data exper-
iment. Note that f0 is an identity mapping. All leaky-
ReLU layers use 0.1 as the negative scale factor.

Feature extractor (fs)
1 2048 dimensional features
2 512 (1024) - fully connected, leaky-ReLU

Feature Generator Network (fatt.)
1 class attribute vectors
2 512 (1024) - fully connected, leaky-ReLU
3 dropout, keep prob. = 0.5
4 Gaussian noise
5 512 - fully connected, leaky-ReLU
6 dropout, keep prob. = 0.5
7 Gaussian noise
8 512 (1024) - fully connected, leaky-ReLU
9 dropout, keep prob. = 0.5
10 Gaussian noise
11 512 (1024) - fully connected, leaky-ReLU

Feature Classifier Network (h)
1 512 (1024) dimensional features
2 number of classes - fully connected

Confusion Network (g) - Residual Model
1 512 (1024) dimensional features
2 512 (1024) - fully connected, leaky-ReLU

Table 3. The network structures for the ZSL experi-
ments. The values within parenthesis are used for the
Sun dataset. All leaky-ReLU layers use 0.1 as the neg-
ative scale factor. The additive Gaussian noise layers
use zero mean and a standard deviation of 1.0. We use
Batch-normalization for all layers of the generator net-
work (i.e., fatt.).



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
momentum (m)

10

20

30

40

50

60

70

pe
rf

or
m

an
ce

 (
ac

cu
ra

cy
 %

)

A2D
W2A
Awa1
Cub

Figure 1. The robustness of the proposed min-max solution with respect to variations of the statistical accumulation momentum, m.
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Figure 2. The robustness of the proposed min-max solution for the λu parameter in the loss function (see equations 8 and 11 in the main
paper) for two UDA sets (Left) and two ZSL sets (Right).

2. Moment accumulation
In our experiments, we used statistical accumulation with m = 0.5 for UDA and m = 0.1 for ZSL. In Fig. 1, we report

the robustness of the proposed min-max solution. For this experiment, we select two UDA experiment sets and two ZSL
experiment sets. We observe that in all cases, moment accumulation is beneficial for statistical alignment. Furthermore, the
performance of the solutions stays consistent for a wide range of momentum values (i.e., 0.1 ≤ m ≤ 0.6). We observe that
in the case of ZSL, the moment accumulation is essential. We conjecture that this is due to the stability accumulation can
bring in to the min-max learning.

3. Statistical loss weight λu

In Fig. 2, we report effects of changing the statistical loss weight, i.e., λu in Eq. 8 and Eq. 11 of the main text. For
this experiment, we select two UDA sets with λu ∈ {0.0001, 0.0005, 0.001, 0.005} and two ZSL experiment sets with
λu ∈ {0.001, 0.01, 0.1, 1}. In both experiments, consistent performance can be attained in a wide range of values for λu,
suggesting robustness and easy-tuning. We observe that relatively smaller values of λu are useful for the UDA sets in
comparison to the ZSL sets.

4. Mini-batch creation for GZSL
We train the final classifier (see § 3.2.1 of the main paper) with mini-batches containing a mixture of real seen classes

instances and generated unseen class instances. To improve our classifier’s robustness to unseen classes, we include generated
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Figure 3. The performance of the proposed ZSL solution with different proportions of generated class instances.

class instances as 2x the number of real instance for each mini-batch in our reported experiments (see Table 3 in the main
paper). In Fig. 3, we report the performance of our solution when the number of unseen class instances are increased by 2x,
4x, 6x and 8x. Here, we observe a consistent improvement in performance, except for Cubs experiment, by increasing the
number of generated samples in mini-batches. Furthermore, we observe that the unseen class performance can be significantly
improved by increasing the proportion of generated unseen class training samples.

5. Confusion network design
In all our reported experiments, we used confusion networks with a residual skip connection. In this section we provide

further insights into our proposed confusion network design by comparing the performance of several network structures (see
Fig. 4). In Table 4 we report the performance of different confusion networks for two domain sets from Office31 dataset and
two ZSL datasets. For comparison, we also included the performance of the minimization solution (i.e., Min).

Change in dimensionality. We test three input/output configurations of the confusion network. Namely, 1. Equal-dim-
confusion(EDC, see Fig. 4(a)), where the input and output dimensions are equal, 2. Low-dim-confusion (LDC, see Fig. 4(b)),
where the output dimension is lower than the input , and 3. High-dim-confusion (HDC, see Fig. 4(c)) where the output
dimension is higher than the input. For the two UDA sets, the output dimensions of the LDC, EDC and HDC models are
128, 256 and 512, respectively. For the two ZSL sets they are 384, 512 and 768, respectively. We observe that the EDC and
HDC structures perform better than the LDC structure. This is intuitive as going down with the dimension might lead to loss
of information. Overall, we observe that the EDC structure is marginally better than the HDC network.

Use of Batch Normalization. For the network Confusion-with-Batch-Norm (BNC, see Fig. 4(d)), we use an additional
Batch Normalization layer after the EDC model. In our preliminary experiments without statistical accumulation, we ob-
served that confusion networks performing marginally better with Batch-Normalization. By design, the Batch Normalization
layers attempt to keep a stable output feature distribution. This stability can be a favorable condition for statistical alignment.
However, when statistical accumulation is used we observe that the proposed EDC model outperforms the BNC network
(see Table 4). We consider this to be an indication that the proposed statistical accumulation is a better regularizer for the
proposed statistical alignment.

(a) (b) (c) (d) (e) (f)

Figure 4. Schematic diagrams of the confusion networks.



Experiment Min EDC LDC HDC BNC Re.C De.C
A2D 65.5 69.3 64.1 67.3 66.5 68.3 69.7
W2A 48.4 53.9 49.5 52.0 43.3 52.7 50.0
Awa1 53.1 51.9 47.8 52.4 23.4 54.5 40.8
Cub 48.8 50.0 44.8 50.3 22.5 50.6 17.4

Table 4. The performance for various confusion networks structures (Equal-dim-confusion (EDC), Low-dim-confusion (LDC), High-dim-
confusion (HDC), Confusion-with-Batch-Norm. (BNC), Residual-confusion (Re.C), and Dense-confusion (De.C)) given in Fig. 4. For
comparison, we also include the performance of the KL-minimization.

Solution Awa1 Awa2 Cubs Sun
SAE [6] 53.0 54.1 33.3 40.3
ZKL [14] 70.1 70.5 51.7 61.7
Cls. Prot. [5] 69.9 - 54.3 63.3
CLSW [12] 68.2 - 57.3 60.8
Min 61.7 62.3 52.8 54.2
Min-Max 64.1 69.5 56.6 58.8

Table 5. Comparison of the proposed ZSL solution (Min-Max) on conventional ZSL for the proposed splits in [13]. Although our solution
does not outperform state-of-the-art solutions in this conventional protocol, we observe that the proposed min-max consistently outperforms
the minimization solution.

Use of Skip Connections. Here we explore two skip connection based confusion network structures. Namely, 1. Residual-
confusion (Re.C) (see Fig. 4(e)) and 2. Dense-confusion (De.C) (see Fig. 4(f)). Similar to ResNet [3], we perform an
addition of the skip connection for the Re.C model. We use a concatenation of the skip connection for De.C in the spirit
of the DenseNet [4] and the Inception module [9]. In comparison to our EDC and De.C networks, we observe a stable
performance improvement from the Re.C model. Therefore, for all our reported results we use Re.C confusion network.

6. Convergence of the min-max and stopping criteria
We report the performance of min and min-max solutions after a fixed number of training iterations. In Fig. 5, we show the

min-max alignment training loss for a UDA and a ZSL set. Similar convergence curves are observed in other experiments.
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Figure 5. Convergence of min-max training for the W2A and Awa1 experiment sets.

7. Conventional ZSL Performance
It is our understanding that the generalized protocol (i.e., GZSL [13, 11]) is more recent and represents a more challenging

problem than the conventional ZSL. That said, we evaluated the min-max and min solution on conventional ZSL(see Table 5).
We achieve competitive result on the CUBs and Awa2 datasets (56.9% and 69.5%, respectively). As a pointer, the min
solution achieves 52.8% and 62.3% for these datasets, respectively. On the Awa1, the min-max solution, outperforms the
min solution by a large gap but comes short in comparison to the SOTA ZSL solutions (our result reads as 64.1%).
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