
Supplementary Material

1. Network Setting and Training
1.1. Lateblind Model

In this section, we provide the architectural details of
the proposed late-blind model. First, the audio ConvNet
follows the VGGish architecture proposed in [4], which
achieves excellent results on audio classification task. Sec-
ond, the visual generator and discriminator mostly adop-
t the same networks in DCGAN framework [8], except that
the out channel size of last deconvolution layer is set to 1
in MNIST experiments. Third, due to different complexi-
ties of MNIST and CIFAR-10 data, we use different visual
classifiers for those two datasets. Specifically, a small Con-
vNet with two convolution layers followed by two fully-
connected layers is utilized to classify MNIST digits, and
the ResNet-18 [3] is employed as the visual classifier for
CIFAR-10 dataset.

The training procedure of the whole late-blind model is
composed of three steps. First, the audio ConvNet is pre-
trained on MNIST/CIFAR-10 dataset for audio classifica-
tion, where the audio is obtained by transforming the im-
ages with vOICe. And the visual classifier is pre-trained on
EMNIST/ImageNet dataset for image classification. Sec-
ond, the adversarial training strategy in [8] is used to train
visual generator and discriminator on EMNIST/ImageNet
dataset for visual knowledge learning. Finally, the audio
ConvNet, visual generator, and visual classifier are concate-
nated for cross-modal generation. We firstly fix the visual
generator and visual classifier, and fine-tune the audio Con-
vNet with image classification loss for several epochs. Then
we train the visual generator and audio ConvNet together
with fixed visual classifier. To be specific, we use a smal-
l initial learning rate of 0.001 with Adam optimizer [5] for
fine-tuning the audio ConvNet, which decreases by 1

10 when
train the visual generator and audio ConvNet together.

1.2. Congenitallyblind Model

The proposed congenitally-blind model consists of one
sound perception module and one cross-modal generation
module. For the former, the off-the-shelf large-scale audio
classification network of VGGish [4] is employed, but the
embedding dim of the second FC layer is set to 128 and the
out dim is set to the number of classes, i.e., 10. To effec-
tively train such sound model, we set batch size to 100 and

choose the Adam optimizer with learning rate of 0.0002 and
beta 1 of 0.5. For the latter, we propose a variant Auxiliary
Classifier GAN (ACGAN) [7], where the input condition-
al label is replaced with audio embeddings. More impor-
tantly, different from the unimodal processing of ACGAN,
the generator deals with visual information while the dis-
criminator focuses on the audio messages. Concretely, the
visual generator firstly projects and reshapes the input au-
dio embeddings and noise into certain image shapes (e.g.,
8 × 8 × 128 for the MNIST dataset) via one Fully Con-
nected (FC) layer and one reshape layer, which is then pro-
cessed by 3 up-sampling module. Each up-sampling lay-
er is followed by one convolutional layer, as well as batch
normalization and ReLU activation. The last layer projects
the generated samples into single channel images (in gray s-
cale), where sigmoid function is adopted for activation. The
audio discriminator is developed based on the VGGish net-
work, where the activation function of convolutional layers
is replaced with Leaky ReLU (with 0.2 alpha) and the dis-
crimination layer and softmax layer are directly performed
over the last Flatten layer. The entire cross-modal gener-
ation model is optimized via the Adam optimizer (learning
rate is set to 0.00002 and beta 1 is 0.5), and the batch size is
set to 100. Moreover, the derivable vOICe translation is de-
rived from the official encoding scheme, and we refactor the
official code into a computational graphs for the derivable
purpose.
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Figure 1. Inception scores of the generated images by our LBM
with different encoding schemes.



2. Encoding Scheme Evaluation by LBM

In this section, we evaluate different encoding schemes
quantitatively and qualitatively. As shown in Fig. 1, we
firstly compute inception score of intermediate generated
images by our LBM with different encoding schemes. And
the results show similar improvements, i.e., the modified en-
coding scheme of PF function achieves the largest improve-
ments, with quantitative evaluation by CBM and human-
based evaluation, which indicates that our LBM framework
can also be used for machine-based assessments to some
extent. For qualitative evaluation, we show more generated
image examples using our late-blind model with different
encoding schemes in Fig. 3. Generally, the images of the
modified schemes are better than the primary ones in most
classes on MNIST/CIFAR-10 datasets. The generated dig-
it images using the modified encoding scheme show more
clean background than the primary ones, especially in num-
ber 2, 3, 4, and 6. In addition, compared to longer audio
length, the proposed PF function of tanh achieves more sig-
nificant improvement in almost every class, which agrees
with the quantitative results in Fig. 1. As for CIFAR-10
dataset, images of the modified schemes contain more de-
tail information, such as windows in airplane images, legs
in dog images and meadows in horse images. Meanwhile,
there is no obvious improvements in several difficult class-
es, like automobile, ship, and truck, which confirms the d-
ifficulty of realistic objects generation. This is because the
LBM learns visual generator and visual classifier from EM-
NIST/ImageNet datasets and it’s hard to transfer learned
knowledge to MNIST/CIFAR-10 datasets in cross modal
generation, especially when there are extra more classes in
ImageNet dataset. Moreover, as for failure case, the mod-
ified schemes obtain worse results in number 8, bird, and
frog classes, and the reason behind this could be the trained
LBM tend to capture detail structure of objects, resulting in
overall object contour missing.

3. Dataset Examples

In this section, we show some digit examples of M-
NIST [6] and EMNIST [1] in Fig. 2. The MNIST dataset is
a subset of a much larger dataset of NIST Special Database
19 [2], while EMNIST is a extended MNIST dataset and a
variant of the full NIST dataset. Hence, the EMNIST Dig-
its enjoy an increased variability (e.g., size, style, rotation,
etc.) and are more challenging [1]. In the handwritten dig-
its generation task, the EMNIST Digits are adopted to pro-
vide abundant digit samples for training the visual models
of LBM, while the MNIST dataset is used for training the
cross-modal perception model.

MNIST Samples
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Figure 2. Some samples in the MNIST and EMNIST Digits
dataset.

4. Cognitive Evaluation Details
4.1. The preliminary training lessons

In this section, we briefly introduce the preliminary train-
ing lessons employed for training the participants. The used
images are shown in Fig. 4, and the corresponding sounds
can be found in the “examples” folder.
The first lesson. This lesson focused on the initial identi-
fication of simple shapes, i.e., circle, triangle, and square.
The assistant of each participant randomly selected and
played one translated sound for the participant. After play-
ing one sound, the participants were told the concrete con-
tent of corresponding image. During the whole first train-
ing lesson, each sound (with image) should be played for
15 times. Hence, all the translated sounds were played for
45 times totally. After finishing this lesson, the participants
should take a rest for 5 minutes.
The second lesson. Based on the first lesson, the second
lesson aimed at the recognition of more complex shapes,
i.e., a normal “L”, an upside-down “L”, a backward “L”, and
a backward and upside-down “L” (i.e., 7). The assistants
randomly selected and played translated sounds for each
participant. After playing each sound, the assistants told
the participants the concrete shape of corresponding image.
In the second lesson, each sound should be played for 15
times totally. Hence, all the translated sounds were played
for 60 times. After this lesson, the participants should take
a rest for 5 minutes.
The third lesson. In the third lesson, we aimed at the per-
ception of orientation, i.e., straight white bar of fixed-length
at 0, 22, -22, 45, -45, or 90 degrees relative to vertical (The
positive angles correspond to clockwise rotations). The as-
sistants randomly selected and played translated sounds for
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Figure 3. Comparison among the generated image examples of MNIST/CIFAR-10 dataset using our late-blind model in terms of different
encoding schemes. For each dataset, the first row represents the primary encoding scheme, the second row represents the modified scheme
w.r.t. longer audio length, and third row for the modified scheme w.r.t. the position-frequency function of tanh.

each participant. After playing each sound, the participants
were told the concrete orientation of corresponding bar. In
the third lesson, each sound should be played for 15 times
totally. Hence, all the translated sounds were played for 90
times. After this lesson, all the participants should take a
rest for 5 minutes.

The fourth lesson. This lesson focused on the estimation
of different lengths, i.e., five bars with different lengths. To
improve the sensitivity of lengths, these five bars were al-
so placed in one of four orientations, i.e., 0. 90, 45, and
-45 degrees as in the third lesson. During training, the as-
sistants randomly selected and played translated sounds for
each participant. After playing each sound, the assistants
told the participants the concrete length of corresponding
bar (by touch). The translated sound of each image should
be played for 15 times totally. Hence, all the sounds were
played for 75 times. After finishing this lesson, the partici-
pants should take a rest for 5 minutes.

The fifth lesson. In the last lesson, the participants were
trained to possess the localization ability, where circles
in different places of images (i.e., upper-left, upper-right,
bottom-left, bottom-right, and center) were considered.

During training, the assistants first randomly selected and
played translated sounds for each participant. After playing
each sound, the participants were told the position of corre-
sponding circle. The translated sound of each image should
be played for 15 times totally. Hence, all the sounds were
played for 75 times.

4.2. The advanced training lessons

In the advanced training lessons, all the participants were
asked to perform the image classification task by hearing
the translated sounds, where the COIL-10 dataset was em-
ployed for training and testing. Concretely, the COIL-10
dataset consisted of 10 real objects, such as toy car, for-
tune cat, bottle, etc. In the training set, each category had
70 image-sound pairs. Before training the participants, they
should be told that the images of each object were taken
from different angles. Note that the evaluation test was con-
ducted after finishing the training of each object category
instead of all the categories. During training, the assistant
played the translated sounds of each object for each par-
ticipant in a certain order. After playing each sound, the
assistant told the participant the concrete object and corre-



Figure 4. The images used for training the participants in the pre-
liminary training lessons.

sponding angle. In the testing process, 100 sounds (of 10
objects) in the testing set were successively played for the
participants, then the participants were asked to answer if
the played sound corresponded to the object in the training
process. After training and testing all the 10 objects, we
evaluated the classification performance in terms of recall,
precision, and F1-score.
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