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1. Derivation of Back-propagation

We first show the forward pass for illustration. We follow
the common matrix notation that the vectors are column

vectors by default while their derivations are row vectors.

Given the mini-batch inputs X € RI*™  the forward pass
of our Iterative Normalization (IterNorm) to compute the
whitened output is described below:
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where P is calculated based on Newton’s iterations as
follows:
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The back-propagation pass is based on the chain rule.

Given S)L( we can calculate E)L based on Eqn. 1| and 2:
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Based on Eqn. 4 and 5, we obtain:
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Based on Eqn. 7, we can derive 75 as follows:
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where {B%Lk, k =1,...,T} can be calculated based on Eqn.
5 and 7 by following iterations:
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Further, we can simplify the derivation of g—)L( as:
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2. Comparison of Wall Clock Time

As discussed in Section 3.3 of the main paper, the com-
putational cost of our method is comparable to the convolu-
tion operation. To be specific, given the internal activation
X € Rhxwxdxm the 3 x 3 convolution with the same
input and output feature maps costs 9hwmd?, while our Iter-
Norm costs 2hwmd? + T'd®. The relative cost of IterNorm
for 3 x 3 convolution is 2/9 + T'd/mhw.

Here, we compare the wall-clock time of IterNorm,
Decorrelated Batch Normalization (DBN) [3] and 3 x 3
convolution. Our IterNorm is implemented based on Torch
[2]. The implementation of DBN is from the released code
of the DBN paper [3]. We compare ‘IterNorm’ to the ‘nn’,
‘cudnn’ convolution [1] and DBN [3] in Torch. The exper-
iments are run on a TITAN Xp. We use the corresponding
configurations of the input X € RPXw>dXm and convo-
lution W € R3>3%dxd: py — 64, h = w = 32. We
compare the results of d = 64 and d = 128, as shown in
Table 1. We find that our unoptimized implementation of
IterNorm (e.g., ‘IterNorm-iter5’) is faster than the ‘nn’ con-
volution, and slightly slower than ‘cudnn’ convolution. Note
that our IterNorm is implemented based on the API provided
by Torch [2], it is thus more fair to compare IterNorm to ‘nn’
convolution. Besides, our IterNorm is significantly faster
than DBN.

Besides, we also conduct additional experiments to com-
pare the training time of IterNorm and DBN on the VGG
architecture described in Section 5.1 of the main paper, with
a batch size of 256. DBN (group size of 16) costs 1.366s per
iteration, while IterNorm costs 0.343s.

Module d=64 d=128
‘nn’ convolution 8.89ms 17.46ms
‘cudnn’ convolution 5.65ms 13.62ms
DBN [3] 15.92ms 35.02ms
IterNorm-iter3 6.59ms 13.32ms
IterNorm-iter5 7.40ms 13.92ms
IterNorm-iter7 8.21ms 14.68ms

Table 1. Comparison of wall clock time (ms). ‘IterNorm-iterN’
(N=3, 5 and 7) indicates the proposed IterNorm with iteration
number of N. We compute the time including the forward pass and
the backward pass, averaged over 100 runs.

—BN —BN
.40 —DBN —DBN
g — lterNorm-iter1 — lterNorm-iter1
g30 — IterNorm-iter3 — IterNorm-iter3
£ — lterNorm-iter5 — lterNorm-iter5
£20 IterNorm-iter7 IterNorm-iter7
= — IterNorm-iter9 — IterNorm-iter9

=

0 20 40 60 80 100 0 20 40 60 80 100
lterations lterations

(a) (®)

Figure 1. Ablation study in training an MLP on MNIST. The ex-
perimental setup is the same as the setup in Section 4.2 of the
main paper: We train a 4-layer MLP and the number of neurons
in each hidden layer is 100; We use full batch gradient and report
the best results with respect to the training loss among learning
rates={0.2,0.5,1,2,5}. (a) shows the training error with respect
to the iterations, and (b) shows the test error with respect to the
iterations.
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Figure 2. Comparison of different normalization operations in con-
dition number of covariance matrix of normalized output (a) and
SND (b). We sample 60,000 examples from Gaussian distribu-
tion and choose a batch size of 1024, and observe the results with
respect to the dimensions from 2" to 2%, averaged over 10 times.

3. Experiments of IterNorm with Different It-
erations

Here, we show the results of IterNorm with different iter-
ation numbers on the experiments described in Section 4.2
of the main paper. We also show the results of Batch Nor-
malization (BN) [4] and Decorrelated Batch Normalization
(DBN) [3] for comparison.

Figure 1 shows the results on MNIST dataset. We explore
the effects of 7" on performance of IterNorm, for a range
of {1,3,5,7,9}. We observe that the smallest (T = 1) and



input (32 x 32 RGB image)
conv3(3,64)
conv3(64,64)
maxpool(2,2)
conv3(64,128)
conv3(128,128)
maxpool(2,2)
conv3(128,256)
conv3(256,256) x3
maxpool(2,2)
conv3(256,512)
conv3(512,512) x3
maxpool(2,2)
conv3(512,512) x4
avepool(2,2)
FC(512,10)
soft-max

Table 2. The VGG network used in the experiment as shown in
Section 5.1 in the main paper. ‘conv3(d;n, dout)’ indicates the
3 x 3 convolution with input channel number of d;,, and output
channel number of dy.¢.

the largest (T = 9) iteration number both have the worse
performance in terms of training efficiency. Further, when
T =9, IterNorm has significantly worse test performance.
These observations are consistent to the results on VGG
network described in Section 5.1 of the main paper.

Figure 2 shows the results of SND and conditioning anal-
ysis. We observe that IterNorm has better conditioning and
increasing SND, with increasing iteration 7". The results
show that the iteration number T’ can be effectively used to
control the extent of whitening, therefore to obtain a good
trade-off between the improved conditioning and introduced
stochasticity.

4. Details of the VGG Network

As introduced in Section 5.1 of the main paper, we use
the VGG networks [5] tailored for 32 x 32 inputs. Table 2
shows the details of the used VGG network.
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