
Supplementary Materials for Neural Task Graphs: Generalizing to
Unseen Tasks from a Single Video Demonstration

1. Implementation Details

Image inputs are first encoded (Enc(·) in the paper)
by the SqueezeNet to a 128D embedding. Demo Inter-
preter is a 2-layer GRU seq2seq model with attention and
128 hidden units using the OpenNMT implementation [1].
Both the Node Localizer and the Edge Classifier are 4-layer
MLPs. GCN uses 128D node embedding and 2-layer MLPs
for fset and freset in Equation (1) in the paper. Each
component is trained with a separate loss function, but the
full model is end-to-end trainable to the input images. An
overview of our model architecture is shown in Figure 1.

2. Generalizing to Unseen States and Execu-
tion Orders

The main advantage of using the Conjugate Task Graph
is that we do not have to enumerate the unseen states. The
states are implicitly related to the actions by the Edge Clas-
sifier. As for generalizing the execution order, we train
our GCN to learn to generate the edges (action transitions)
that are not observed in a single demonstration (supervision
comes from multiple demonstrations per task). This allows
the execution engine to handle actions whose order can be
permuted at test time.

3. Approach Clarification

We do not use object detector in this work because the
whole image is encoded by the CNN. In addition, we do
not explicitly estimate the state in this work because state
estimation is only required when there is a “fork” in the
conjugate task graph (Fig. 5 in the paper), where actions are
nodes and transition state are edges. In this case, we use the
Edge Classifier to determine the next node (action), which
implicitly understands the current state. Finally, We do not
perform temporal action detection/localization in this paper.
As discussed in the paper, we do not need to know the the
exact temporal extent of each action in the demonstration
to construct the task graph. Thus, we only use the seq2seq
model to capture the order of actions in the demonstration.

References
[1] Guillaume Klein, Yoon Kim, Yuntian Deng, Jean Senellart,

and Alexander M. Rush. OpenNMT: Open-source toolkit for
neural machine translation. In Proc. ACL, 2017.



Image Encoder

12
8Squeeze

Net

Demo Interpreter

12
8

Image
Encoder

Image
Encoder

Image
Encoder

12
8

12
8

Se
q2

Se
q

(G
RU

 +
 A

tt
en

tio
n)

2
La

ye
rs

–
Hi

dd
en

Si
ze

 1
28

a 2
a 1

Graph Completion Network

a 1
(1

28
)

a 1
(1

28
)

2 Layer MLP2 Layer MLP

Node Localizer

12
8Image

Encoder
4 Layer

MLP

a k

Edge Classifier

12
8

4 Layer
MLP E k

à
j

a k
(1

28
)

Image
Encoder

Figure 1. Architecture of each module of our Neural Task Graph (NTG) Networks. The Image Encoder uses SqueezeNet to compress the
64x64x3 image to a 128 dim vector. The Demo Interpreter passes each frame of the demo video through the image interpreter, then passes
the resulting sequence through a 2 layer Seq2Seq model with GRU and Attention and a 128 dimension hidden state. The Graph completion
network uses 2 layer MLP networks to propagate the node embedding to their neighbors, and a 2 Layer MLP to update the edges based on
the nodes. The Node Localizer uses the Image Encoder to encode the image, then a 4 Layer MLP to predict the current node in the graph.
The Edge Classifier then takes the 128 dim node embedding from the current node, as well as the encoded image state, concatenates them,
then passes it through a 4 layer MLP to predict the next node.


