Appendix for Feedback Adversarial Learning:
Spatial Feedback for Improving Generative Adversarial Networks

We present additional high resolution results in Sec-
tion A. We describe the detailed architectures in Section B,
followed by the training details presented in Section C.

A. Additional Results

We show additional result on models trained with Feed-
back for image generation in Figure 1, image-to-image
translation in Figure 2 and Figure 3, and voxel generation
in Figure 4.

The spatial feedback produced by the discriminators pro-
vides useful information for the model to progressively gen-
erate better quality images and voxels overtime. In Figure 1,
we observe that facial features and the lighting on the skin
improve over time. In Figure 2, we can see the texture of the
building and street improve with feedback. Similarly Fig-
ure 3, we can see that the room lighting improves over time
and the colors become more spatially coherent. In Figure 4,
the voxel details such as the wings of airplanes, the front
side of cars, and the tops of vessels are gradually improved.
Also, the noisy voxel cells outside of vehicles are fixed over
time.

B. Detailed Architectures
B.1 Image Generation

We use the BigGAN-deep [1] to train our models. We
omit using self-attention layer [7] due to the memory over-
head. We do not use orthogonal regularization as we have
observed the improvement is minor. We use latent vec-
tor of size 128 sampled from a truncated normal z ~
trunc(N(0,1),2). The latent vector z is passed through
the network as the input. The latent vector is also used to
predict the affine parameters for the conditional batch nor-
malization layers. See Table 4 for details. The feedback
information is fed in after the 4-th residual block — the gen-
erator has 10-blocks in total. The construction of the resid-
ual blocks can be found in [1].

B.2 Image-to-image Translation

For the task of image-to-image translation, we use the same
architecture as [8]. We use 9-Residual blocks. We define the
encoding to be at the end of 4-th block. We made some mi-
nor modification to improve the overall performance of the
original model. We replace strided-convolution with stride-
1 convolution followed by average pooling. We replaced the

convolution-transpose layer with nearest neighbor upsam-
pling followed by stride-1 convolution. We replaced 4 x 4
kernels in the discriminator with 3 x 3-kernels. Lastly, we
apply spectral-normalization on all the layers. The compo-
sition of the residual block can be found in [&].

B.3 Voxel Generation

We adopt a similar architecture proposed in Voxel GAN [6].
We train the generator to predict 64 x 64 x 64 voxel from a
128-dimensional latent vector. The voxels are constraint to
be within [—1, 1]. See Table 6 for architecture details.

B.4 Voxel Classifier

The classifier consists of 6 3D-convolutional layers, The
last layer is flattened as passed through fully-connected
layer to output a 10-dimensional vector indicating the pre-
dicted probabilities. See Table 7 for architecture details.

C. Training Details

C.1 Image Generation

We train our models using Adam optimization [4], with
By = 0 and By = 0.999, and a learning rate of 5 - 10~°
for the generator and 2 - 10~* for the discriminator. We
train all our models with a batch size of 16 for 10 epochs.

C.2 Image-to-image Translation

We train our models using Adam optimization [4], with
B1 = 0.5 and B = 0.999. We use a learning rate of 104
for both generator and the discriminator. We scale the re-
construction loss by 10. We train all our models with a batch
size 1 for 200 epochs.

C.3 Voxel Generation

We train our models with Adam optimization [4] with a
learning rate of 1074, 51 = 0.5, and B = 0.9. We train
the models with a batch size of 10. The weight of the gra-
dient penalty () is set to 10 as proposed in [2]. We use a
latent dimension of 200, following [6].

Category Airplane Bench Car Chair Display
Accuracy 95.9% 77.8% 99.6% 97.3% 95.0%
of Voxels 4045 1816 7497 4962 1095
Category Rifle Speaker Table Telephone Vessel
Accuracy 99.2% 86.9% 95.4% 95.0% 98.8%
of Voxels 2372 1618 8509 1052 1939

Table 1: Voxel classifier: Voxel classifier’s classification
accuracy. The trained classifier’s overall accuracy is 95.9%
on ShapeNet.

C.4 CelebA Inception Classifier

To evaluate the quality of the generated CelebA images, we
use the Frechet Inception Distance (FID). FID is a widely
used metric that uses an inception network trained on Im-
ageNet to measure the statistical discrepancy between the
generated samples and real samples. We used the Inception-
v3 model provided by PyTorch [5]. We use the last feature
layer (dimension of 2048) to compute the FID score.

C.5 Voxel Classifier

To train the voxel classifier, we use all 10 categories in
ShapeNet: airplane, bench, car, chair, display, rifle, speaker,
table, telephone, and vessel. We collect around 30k training
voxels and 6k testing voxels. We train the classifier with a
batch size of 32 using Adam optimization [4] with a learn-
ing rate of 1074, B1 = 0.9, and By = 0.999. The classifier
is trained to perform a 10-way classification using cross-
entropy loss. The performance of the classifier in each cat-
egory is shown in Table. 1. Note that the bench category is
original a sub-category of chairs. We separate it from chairs
because it has a sufficient number of 3D models. This also
explains the lower classification accuracy of benches, which
are easily misclassified to chair category.

D. Ablation Study

In Table 2, we experiment with using only previous gen-
eration as feedback (similar to [3] from ICLR workshop)
which outperforms the baseline without feedback. Our
model achieves the best performance using both the pre-
vious generation and the discriminator response since the
model can modify image regions that are considered fake
by the discriminator. Furthermore, in Table 3, we experi-
ment with different variations of combining feedback infor-
mation into the encoded features. We observed predicting
both the scale and the bias to achieve the best performance.

References

[1] A. Brock, J. Donahue, and K. Simonyan. Large scale gan
training for high fidelity natural image synthesis. In Interna-
tional Conference on Learning Representations, 2019.

Feedback ‘ Per-pixel acc Class IOU
Ground Truth | 076 0.21
No feedback ‘ 0.70 0.18
Previously Generated Image [3] 0.72 0.18
Discriminator Output 0.71 0.18
Both (ours) 0.74 0.19

Table 2: Feedback input CityScapes FCN score when us-
ing different types of feedback (higher is better). Our model
uses both the previously generated image and the discrimi-
nator response of it as feedback, achieving the best perfor-
mance.

Generation ‘ t=1 t=2 t=3

Metric | Per-pixel acc
Ground Truth ‘ 0.76 -
No feedback | 0.70 -
Bias 0.60 0.70 0.71
Scale 0.58 0.72 0.74
AST (ours) | 0.61 073 074

Table 3: Variations of feedback CityScapes segmentation-
to-photo performance using different feedback mechanism
(higher is better). Bias adds information to the feature, and
scale is re-weights the features.

[2] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C.
Courville. Improved training of wasserstein gans. In Advances
in Neural Information Processing Systems, 2017.

[3] D.J.Im, C. D. Kim, H. Jiang, and R. Memisevic. Generating
images with recurrent adversarial networks. In ICLR Work-
shop, 2016.

[4] D.P. Kingma and J. Ba. Adam: A method for stochastic opti-
mization. In International Conference on Learning Represen-
tations, 2015.

[5] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. De-
Vito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer. Auto-
matic differentiation in pytorch. 2017.

[6] J. Wu, C. Zhang, T. Xue, W. T. Freeman, and J. B. Tenen-
baum. Learning a probabilistic latent space of object shapes
via 3d generative-adversarial modeling. In Advances in Neu-
ral Information Processing Systems, 2016.

[7]1 H. Zhang, 1. J. Goodfellow, D. N. Metaxas, and A. Odena.
Self-attention generative adversarial networks. In Neural In-
formation Processing Systems, 2018.

[8] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired
image-to-image translation using cycle-consistent adversarial
networks. In International Conference on Computer Vision,
2017.

Table 4: Architecture details for unconditional image-generation. We use ch = 64.

Generator (Encoder Ge)

z € R12 ~ N(0,1)

Dense 128 — 4 x 4 x 16¢h

ResBlock 16¢ch — 16¢h

ResBlock up 16¢ch — 16¢h

ResBlock 16¢h — 16¢h

ResBlock up 8ch — 8ch

Generator (Decoder Gg)

ResBlock 8ch — 8ch

Discriminator (D)

RGB image y € R128x128x3

ResBlock down ch — 2ch

ResBlock 2ch — 2ch

ResBlock down 2ch — 4ch

ResBlock 4ch — 4ch

ResBlock down 4ch — 8ch

Feedback (encoder Fy)

Feedback input (f concat ry) € R128x128x4

3 x 3 Conv 4 — ch, AvgPool, BN, ReLU
3 x 3 Conv ch — 2ch, AvgPool, BN, ReLU
3 x 3 Conv 4ch — 4ch, AvgPool, BN, ReLU
3 x 3 Conv 4ch — 8ch, AvgPool, BN, ReLU

ResBlock up 8ch — 4ch
ResBlock 4ch — 4ch
ResBlock up 4ch — 2ch
ResBlock 2ch — 2ch
ResBlock up 2ch — ch
BN, ReLU, 3 x 3 conv ch — 3
Tanh

ResBlock 8ch — 8ch
ResBlock down 8ch — 16¢h
ResBlock 16ch — 16¢ch
ReLU, 3 x 3 Conv 16ch — 1

Feedback (Decoder Fy)

(ht—1 concat ft—1)

3 x 3 Conv 16¢ch — 16¢ch

Table 5: Architecture details for image-to-image translation. We use ch = 64.

Generator (Encoder Ge)

o= RH><W><3

Conv 3 — ch, AvgPool, IN, ReLU

Conv ch — 2ch, AvgPool, IN, ReLU

Conv 2ch — 4ch, AvgPool, IN, ReLU

Conv 4ch — 8ch, AvgPool, IN, ReLU
ResBlock 8ch — 8ch
ResBlock 8ch — 8ch
ResBlock 8ch — 8ch
ResBlock 8ch — 8ch

Feedback (encoder Fj)

Discriminator Feedback input (i ch-concat 1) € RH*W x4

RGB image y € R256%256x3

3 x 3 Conv 3 — ch, AvgPool, IN, ReLU

3 x 3 Conv 3 — ch, AvgPool, IN, LeakyReLU 3 x 3 Conv ch — 2ch, AvgPool, IN, ReLU
3 x 3 Conv ch — 2ch, AvgPool, IN, LeakyReLU 3 x 3 Conv 2ch — 4ch, AvgPool, IN, ReLU
3 x 3 Conv 2ch — 4ch, AvgPool, IN, LeakyReLU 3 x 3 Conv 4ch — 8ch, AvgPool, IN, ReLU
3 x 3 Conv 4ch — 8ch, AvgPool, IN, LeakyReLU ResBlock 8ch — 8ch

Generator (Decoder Gg)

ResBlock 8ch — 8ch

ResBlock 8ch — 8ch

ResBlock 8ch — 8ch

ResBlock 8ch — 8ch

ResBlock 8ch — 8ch
NN-upsample, Conv 8ch — 4ch, IN, ReLU

3 x 3 Conv 8ch — 8ch, AvgPool, IN, LeakyReL.U
ReLU, 3x3 Conv 1

Feedback (Decoder F})

ht_1 ch-concat fr_1

3 x 3 Conv 16¢ch — 16¢ch

NN-upsample, Conv 4ch — 2ch, IN, ReLU

NN-upsample, Conv 2ch — ch, IN, ReLU

Conv 2ch — ch
Tanh

Table 6: Architecture details for voxel generation. We use ch = 32.
Feedback (encoder Fy)

Generator (Encoder Ge)
2z € R?90 ~ Af(0,1) Discriminator (D) Feedback input (¢t concat ry) € R64x64x64x2
Dense 128 — 256, LeakyReLU Voxel cube y € RO4x64x64 3 x 3 Conv3D stride-2 2ch — 4ch, BN, ReLU
3 x 3 Conv3D stride-2 4ch — 8ch, BN, ReLU

3 x 3 Conv3D stride-2 1 — 2ch, LeakyReLU
3 x 3 Conv3D stride-2 2ch — 4ch, LeakyReLU 3 X 3 Conv3D stride-2 8ch — 16¢h, BN, ReLU
3 x 3 Conv3D stride-2 16ch — ch, BN, ReLU

Dense 256 — 4 x 4 x 4 x ch, LeakyReLU

Generator (Decoder Gg)
NN-upsample, 3 x 3 Conv3D 8ch — 4ch, ReLU 3 X 3 Conv3D stride-2 4ch — 8ch, LeakyReLU
NN-upsample, 3 x 3 Conv3D 4ch — 2ch, ReLU 3 X 3 Conv3D stride-2 8ch — 16¢h, LeakyReLU

1 x 1 Conv3D 16¢h — 4ch, LeakyReLU Feedback (Decoder F})

3 x 3 Conv3D ch — ch, BN

(ht—1 concat fy_1)
3 x 3 Conv3D 2ch — 2ch

NN-upsample, 3 x 3 Conv3D 2ch — ch, ReLU
NN-upsample, 3 x 3 Conv3D ch — 1 1 x1Conv3D 4ch — 1

Sigmoid

Table 7: Architecture details for voxel classifier. We use ch = 32.

Classifier
R64x64x64

Voxel cube y €
3 x 3 Conv3D stride-2 1 — 2ch, BN, LeakyReLU

3 x 3 Conv3D stride-2 2ch — 4ch, BN, LeakyReLU

3 x 3 Conv3D stride-2 4ch — 8ch, BN, LeakyReLU

3 x 3 Conv3D stride-2 8ch — 16¢h, BN, LeakyReLU

Flatten, Dense 16¢ch — 10

Softmax

Figure 1: Image generation: Additional results on CelebA images.

	. Additional Results
	. Detailed Architectures
	Image Generation
	Image-to-image Translation
	Voxel Generation
	Voxel Classifier

	. Training Details
	Image Generation
	Image-to-image Translation
	Voxel Generation
	CelebA Inception Classifier
	Voxel Classifier

	. Ablation Study

