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Here, we provide additional details on IRR-PWC, our
occlusion upsampling layer, more qualitative examples on
the ablation study, as well as a qualitative comparison with
the state of the art.

A.IRR-PWC

Fig. 9 shows our IRR-PWC model that jointly estimates
optical flow and occlusion using bi-directional estimation,
bilateral refinement, and the occlusion upsampling layer.
Given a 7-level feature pyramid as in the original PWC-Net
[52], our IRR-PWC first iteratively and residually estimates
optical flow and occlusion up to a quarter resolution of the
input image, as shown in Fig. 9a. Then, given the estimates
at the 5™ level, we show how we use our occlusion upsam-
pling layer in Fig. 9b to scale the estimates up to the original
resolution. The upsampling layer upscales the resolution by
2x at once, and applying the upsampling layer at the 6%
and 7" level scales the quarter resolution estimate back to
the original resolution.

Fig. 7 in the main paper shows the detailed structure of
the upsampling layer. In the following, we describe the de-
tails on the residual blocks in the upsampling layer.

B. Details on the Occlusion Upsampling Layer

In the occlusion upsampling layer shown in Fig. 7 in the
main paper, the residual blocks [35] are fed a set of feature
maps as input and output residual occlusion estimates to re-
fine the upscaled occlusion map from the previous level.
Fig. 10 shows the details of the residual blocks. As shown
in Fig. 10a, the subnetwork consists of 3 residual blocks
(i.e. 3 ResBlocks) with 3 convolution layers. One ResBlock
consists of Conv+ReLu+Conv+Mult operations as shown in
Fig. 10b, cf. [35]. This sequence of 3 ResBlocks with one
convolution layer afterwards estimates the residuals over
one convolution output of the input feature maps, and the
final convolution layer of the residual blocks outputs the
residual occlusion. The number of channels for all convolu-
tion layers here is 32, except for the final convolution layer,
which has only 1 channel for the occlusion output.

We use weight sharing also on the upsampling lay-
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(a) Jointly estimating optical flow and occlusion up to a quarter resolution
of the original input, i.e. pyramid levels 1 < ¢ < 5.
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(b) Upsampling optical flow and occlusion using the upsampling layer, i.e.
pyramid levels 6 < ¢ < 7.

Figure 9. IRR-PWC: Our PWC-Net variant with joint optical flow
and occlusion estimation based on bi-directional estimation, bilat-
eral refinement, and the occlusion upsampling layer. (@) Our IRR-
PWC model jointly estimates optical flow and occlusion up to a
quarter resolution of the input image (i.e. up to the 5™ level), the
same as the original PWC-Net. (b) Then, we use our occlusion
upsampling layer to upscale the outputs back to the original reso-
lution while improving accuracy.

ers between bi-directional estimations and between pyra-
mid levels or iteration steps. Furthermore, the ResBlocks
in Fig. 10a also share their weights, which is different
from [35], where they are not shared. With this efficient
weight-sharing scheme, the occlusion upsampling layer im-
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(a) Residual blocks subnetwork.
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(b) One residual block.
Figure 10. Residual blocks in the upsampling layer: (a)
The residual blocks consist of 3 weight-shared ResBlocks

with 3 convolution layers. (b) One ResBlock consists of
Conv+ReLu+Conv+Mult operations [35].

proves the occlusion accuracy by 2.99% on the training do-
main (i.e. the FlyingChairsOcc dataset) and 4.08% across
datasets (i.e. Sintel) with only adding 0.031 M parameters.

C. Additional Qualitative Examples

Occlusion upsampling layer. Fig. 11 provides qualitative
examples of occlusion estimation and demonstrates the ad-
vantage of using the occlusion upsampling layer. The mod-
els used here are trained on the FlyingChairsOcc dataset
only (no fine-tuning on the FlyingThings3D-subset dataset
or Sintel) and tested on Sintel Train Clean. The occlusion
upsampling layer enhances the occlusion estimates to be
much sharper along motion boundaries and refines coarse
estimates. Also, the upsampling layer further detects thinly-
shaped occlusions that were not detected at the quarter res-
olution. Unlike optical flow, where a quarter resolution esti-
mate is largely sufficient, we can see from these qualitative
examples that estimating occlusions up to the original reso-
lution is very critical for yielding high accuracy.

Ablation study on PWC-Net. In addition to Fig. 8 in the
main paper, we here give more qualitative examples for the
ablation study. In Fig. 12, all models are also trained on the
FlyingChairsOcc dataset and tested on Sintel Train Clean.
Our proposed schemes significantly improve the accuracy
over the baseline model (i.e. PWC-Net [52]), yielding better
generalization across datasets.

D. Qualitative Comparison
D.1. Occlusion estimation

Figure 13 demonstrates a qualitative comparison with
the state of the art on occlusion estimation. Qualitatively,
MirrorFlow [25] misses many occlusions in general, and

FlowNet-CSSR-ft-sd [27] is able to detect fine details of
occlusion. In contrast, our method tries not to miss oc-
clusions, which results in a better recall rate but some-
what lower precision than those of FlowNet-CSSR-ft-sd
[27]. Overall, our method demonstrates better F1-score
than FlowNet-CSSR-ft-sd [27], achieving state-of-the-art
results on the evaluation dataset (i.e. Sintel Train Clean
and Final). Note that FlowNet-CSSR-ft-sd [27] is addi-
tionally trained on the ChairsSDHom dataset [26] for han-
dling small-displacement motion, which is related to thinly-
shaped occlusions. Our approach is not trained further.

D.2. Bi-directional flows and occlusion maps

MirrorFlow [25] is one of the most recent related works
that estimates bi-directional flow and occlusion maps.
Fig. 14 provides a qualitative comparison with MirrorFlow
[25] on the Sintel and KITTI 2015 datasets. In this compar-
ison, we use our model fine-tuned on the training set of each
dataset and display qualitative examples from the validation
split. Comparing to MirrorFlow [25], our model demon-
strates far fewer artifacts and fewer missing details for both
flow and occlusion estimation. Although there is no ground
truth for backward flow nor an occlusion map for the second
image available for supervision, our bi-directional model is
able to estimate the backward flow and the second occlu-
sion map well while only using the ground truth of forward
flow and the occlusion map for the first image (latter is only
available on Sintel) during fine-tuning.



Figure 11. Qualitative examples of using the occlusion upsampling layer: (a) overlapped input images, (b) occlusion ground truth, (c)
without using the occlusion upsampling layer, and (d) with using the occlusion upsampling layer. The occlusion upsampling layer makes
occlusion estimates much sharper along motion boundaries and detects additional thinly-shaped occlusions.
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Figure 12. More qualitative examples from the ablation study on PWC-Net: (a) overlapped input images, (b) the original PWC-Net
[52], (c) PWC-Net with Bi, (d) PWC-Net with Occ, (¢) PWC-Net with Bi-Occ, (f) optical flow ground truth, (g) PWC-Net with IRR, (h)
PWC-Net with Occ-IRR, (i) PWC-Net with Bi-Occ-IRR, and (j) our full model (i.e. IRR-PWC). Our full model significantly improves flow
estimation over the original PWC-Net with fewer missing details and clearer motion boundaries. Note that there are gradual improvements
when combining several of the proposed components.

F-score: 0.541

Figure 13. Qualitative comparison of occlusion estimation with the state of the art: (a) overlapped input images, (b) occlusion ground
truth, (¢) MirrorFlow [25], (d) FlowNet-CSSR-ft-sd [27], and (e) ours. In the result image of each method, blue pixels denote false
positives, red pixels denote false negatives, and white ones denote true positives (i.e. correctly estimated occlusion). We include the F-
score of each method in the top-right corner. Our model yields a better F-score on the second and the third scene than FlowNet-CSSR-ft-sd
[27].



Figure 14. Qualitative comparison of the bi-drectional optical flows and occlusion maps in both views with MirrorFlow [25]: All
results are overlayed on the corresponding image, either the first frame or the second frame. (a) Ground truth optical flow, (b) our forward
flow, (c) our backward flow, (d) our occlusion map for the first frame, (e) our occlusion map for the second frame, (f) ground truth occlusion
map, (g) forward flow of MirrorFlow, (i) backward flow of MirrorFlow, (i) occlusion map of MirrorFlow for the first frame, (j) occlusion
map of MirrorFlow for the second frame. Note that KITTI has only sparse ground truth for optical flow and does not provide ground truth
for occlusion.



