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1. Layer Decoder Table

Table 1: Whitebox Model Layer Decoding Table

Layer DenseNet-121 VGG19bn
0 4 128
1 6 128
2 6,2 256
3 6,4 256
4 6,6 256
5 6,8 256
6 6,10 512
7 6,12 512
8 6,12,2 512
9 6,12,4 512
10 6,12,14 512
11 6,12,16 512
12 6,12,18 512
13 6,12,20 512
14 6,12,22 FC
15 6,12,24 -
16 6,12,24,2 -
17 6,12,24,8 -
18 6,12,24,10 -
19 6,12,24,12 -
20 6,12,24,14 -
21 6,12,24,16 -
22 6,12,24,16,FC -

Table 1 is the layer number look-up-table that
corresponds to the layer notation used in the pa-
per. DenseNet-121 (DN121) and VGG19bn (VGG)
appear because they are the whitebox model archi-
tectures used for the main results. The DN121 no-
tation follows the implementation here: https:
//github.com/kuangliu/pytorch-cifar/
blob/master/models/densenet.py [5]. In en-
glish, layer 0 shows that the output of the truncated model
comes from the 4th denseblock of the first denselayer.

Layer 15 means the output of the truncated model comes
from the 24th denseblock in the 3rd denselayer. Layer 22
indicates the output comes from the final FC layer of the
model.

The VGG model does not have denseblocks or dense
layers so we use another notation. In the implementation
at https://github.com/pytorch/vision/
blob/master/torchvision/models/vgg.py,
the VGG19bn model is constructed from the layer array:
[64, 64,M, 128, 128,M, 256, 256, 256, 256,M, 512, 512,
512, 512,M, 512, 512, 512, 512,M ], and we follow this
convention in the table. In the array, each number corre-
sponds to a convolutional layer with that number of filters
and the M’s represent max-pooling layers. Notice, in these
tests we do not consider the first two layers of the model as
they were shown to have very little impact on classification
when perturbed.

2. Whitebox Attack Results

Table 2: Whitebox Attack Results

Base Attack Error tSuc
DN ITCM 99.42 98.86

TPGD 99.60 99.14
TMIFGSM 99.48 99.05
AAL=21 100 99.76

VGG ITCM 97.45 89.27
TPGD 98.28 93.46
TMIFGSM 98.33 91.41
AAL=6 99.73 99.31

DNIN ITCM 99.68 97.44
TPGD 99.54 96.57
TMIFGSM 100 99.99
AAL=7 98.1 20.08

Table 2 shows the numerical attack results on the white-
box models that were used to generate the adversarial ex-
amples to be transferred. Notice, we only measure error and
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tSuc here, as the other metrics (uTR and tTR) are blackbox
only metrics and can only be measured on transferred ex-
amples. In this setting, error is the percentage of adversar-
ial examples generated that fool the model, and tSuc is the
percentage of adversarial examples that are misclassified by
the model as the specified target class. The table shows that
each attack is very effective as a whitebox attack. Here, DN
and VGG represent the CIFAR-10 trained DenseNet-121
and VGG19bn models, andDNIN represents the ImageNet
trained DenseNet-121 model. Recall, ITCM [6], TPGD [7],
and TMIFGSM [2] are all baselines. The AA’s are each
from the best performing layers, as observed in the primary
depth experiment.

Notice, all of the attacks for all models completely de-
grade the performance in terms of error, driving the classifi-
cation accuracy well below random. Our AA even achieves
100% error on the DN whitebox model. We acknowledge
that this is not a surprise, as ε = 0.07 is higher than neces-
sary for a whitebox attack to achieve random accuracy on
CIFAR-10. We also see that the targeted success rates for
all tests but one are very high, indicating that almost all at-
tacks can reliably generate targeted adversarial examples in
the whitebox setting. Interestingly, our AA under-performs
the others on the tSuc ImageNet test, achieving only 20%
tSuc. This may be because the attack drives towards a par-
ticular example (i.e. single example) of the target class and
assumes that if it gets close, it will be in a region of fea-
ture space that will be classified as the target class. How-
ever in ImageNet, the feature space is much larger and there
are many more classes and decision boundaries. So, given
the number of perturbing iterations and epsilon are fixed, in
our case getting ”close” to the target example is not good
enough to cause targeted misclassification.

3. Interpretation of Attack Figure
It is important to fully understand the attack visualiza-

tion Fig. 1 to comprehend what the Activation Attack is
doing. We start with a source image (i.e. dog) and a tar-
get image (i.e. plane) both of which are correctly clas-
sified by the whitebox model (fw), and the source image
is also correctly classified by the blackbox model (fb). In
the whitebox model, the layer L activations for the dog are
orange and dark blue for the plane. Although we cannot
directly observe the activations in fb, there is some layer
that has learned similar dog features and is hence vulner-
able to transferring perturbations. The AA then drives the
dog’s layerL features (orange) towards the planes’s features
(dark blue) by perturbing the input image on the whitebox
model. The resulting features for the perturbed image (light
blue) are not exactly the same as the plane, but are simi-
lar enough as to cause misclassification to the plane class.
These perturbed features then transfer to fb and cause mis-
classification to the plane class in fb.

Figure 1: Illustration of Activation Attack. Given that the
whitebox model (fw) and blackbox model (fb) are initially
correct, the attack drives the layer L activations of the dog
image towards the layer L activations of the plane. After
attack, the dog’s activations are similar to the plane’s and
the perturbed image is classified as a plane to fw and fb.

4. Visual Intuitions in Feature Space
This section will show some visualizations of feature

space not shown in the main manuscript. It is meant to
solidify intuition and verify some findings in the paper re-
garding feature space. Fig. 2 shows an example of a source,
adversarial, and target image triplet in both the image do-
main and in (flattened) feature space. In the image domain,
the adversarial image maintains the spatial features of the
source image. In feature space, the adversarial example has
the dominant features of the target image. This figure fur-
ther verifies the functionality of the AA loss function which
explicitly drives the source image features towards the tar-
get image features.

Fig. 3 shows a t-SNE [11] visualization of CIFAR-10
features for several layers of VGG19bn and DenseNet121
models. This figure is meant to supplement Fig. 4 of the
main manuscript. Namely, Fig. 4 of the manuscript alludes
to the presence of class-wise clusters in feature space. This
visualization confirms that in layers with high separability,
clusters do exist.

5. SVHN Analysis First Tests
In the main experiment, to understand if feature space

perturbations could produce transferable examples we per-
formed an expensive layer sweep to find the best layer. We
also found that transferability characteristics are blackbox
model agnostic. Thus, a motivated attacker could setup a
sandbox environment with a whitebox and blackbox model
and perform a layer sweep to find the best transferring layer.



Figure 2: Source, Adversarial, and Target image triplet in
the image domain and in feature space. The features of
the adversarial image clearly resemble the target image fea-
tures.

Figure 3: t-SNE plot of features from 50 examples of each
class taken from CIFAR-10 trained VGG19 and DN121
models at several layers (L). Colors represent classes. Vi-
sualization meant to supplement Fig. 4 of main manuscript.

The found layer would then presumably be the best for other
blackbox models. However, we also analyzed the findings
and found that layers with well separated class representa-
tions that perturb examples further in two dimensions but
closer in the image domain tend to produce more transfer-
able examples. In an effort to supplement the findings of the
analysis, and avoid the expensive full layer sweep of trans-
ferring to a blackbox model, we include a new experiment
on the SVHN [8] dataset. Here, we perform the analysis of
the whitebox model and perturbed data first to find candi-
dates for well transferring layers. Then, we evaluate those
layers with AA to show that the analysis techniques are suf-
ficient for finding well transferring layers.

In this test we include additional models to further
test the idea that well transferring layers do not depend
on blackbox model. We use DenseNet-121 (DN121)

Table 3: SVHN Model Accuracy Table

Model SVHN Test Accuracy
DN121 96.67

VGG19bn 96.43
RN50 96.47

RN152 96.99
MNv2 96.22
DPN92 96.99

[4], VGG19bn [10], ResNet-50 (RN50) and ResNet-152
(RN152) [3], MobileNetv2 (MNv2) [9], and a Dual Path
Network (DPN92) [1]. Each model is trained on the SVHN
training split for 350 epochs. The test accuracy of each
model is shown in Table 3, where we see that each model is
well trained for the source task.

For these tests we again use DN121 and VGG19bn
whitebox models. However, since we are using new data,
we must reanalyze the models to find the best transferring
layers. First, consider DN121 as a whitebox model. Fig.
4 shows the analysis of this SVHN trained model. Fig. 4
(top) shows the average intra-class and inter-class angular
distance between features at each layer as measured over
100 examples of each class. Recall, this indicates the sep-
arability of class specific features in feature space. Here,
we see class-specific features only become well separated
at the end of the model (layers 16-21). Thus, we mea-
sure the Euclidean distance between the original and per-
turbed AA examples in the image domain and in two di-
mensions, for that part of the network as shown in Fig. 4
(bottom). We identify layers 16-20 as having favorable con-
ditions for transferability, as the perturbed data from these
layers is further in two dimensions but closer in the image
domain. Also, these layers have particularly well separated
features. We choose Layer 17 for these tests because it has a
slight local maxima in the 2D distance measurements. With
this information we can now make the informed decision
to use layer 17 in the AA attack, although it appears layers
16-20 would all transfer well. The first five ”Transfer Sce-
nario” rows of Table 4 show the attack results from a DN121
whitebox. We see the AAL=17 attack outperforms all base-
lines on all blackbox models tested. On average across all
blackbox models, AAL=17 performs better than the best
baseline (TMIFGSM) by 9.16% error, 7.4% uTR, 10.33%
tSuc, 8.38% tTR. Also on average,AAL=17 performs better
than the least powerful baseline (ITCM) by 21.58% error,
20.98% uTR, 18.08% tSuc, 18.25% tTR.

Similarly, we now analyze the VGG19bn model to find
potentially well transferring layers. Fig. 5 (top) shows the
feature separability of each layer and (bottom) shows the
distance between original and perturbed examples. Features
start to become well separated around layer 5 and remain
well separated until the final (FC) layer. If we measure the



Figure 4: Analysis of SVHN trained DN121 layer-wise fea-
ture similarity (top) and distance between original and ad-
versarial examples generated with Activation Attack from
this whitebox model (bottom).

Figure 5: Analysis of SVHN trained VGG19bn layer-
wise feature similarity (top) and distance between original
and adversarial examples generated with Activation Attack
from this whitebox model (bottom).

original/perturbed distance (Fig. 5 (bottom)) at these well
separated layers we identify several candidate layers: L = 6
which has a local max in 2D distance and a local min in
image domain distance, L = 10 which has high 2D pertur-
bation but also high image domain distance, and L = 13
which has relatively high 2D distance and low image do-

main distance. Here, we select L = 6 because of its local
minimum and maximum properties, but a diligent attacker
may try several layers in their own whitebox/blackbox sand-
box environment. We then run the VGG19 whitebox attacks
to all blackbox models and find thatAAL=6 outperforms all
other attacks in all cases. On average across all blackbox
models, AAL=6 performs better than TMIFGSM by 3.93%
error, 3.84% uTR, 13.4% tSuc, 8.89% tTR. Also on aver-
age, AAL=6 performs better than ITCM by 13.34% error,
12.35% uTR, 10.47% tSuc, 6.82% tTR.

Note, we have not done a full layer sweep of attacks to
the blackbox model so we can not definitively say if the
layers chosen from the analysis are the best. As described,
there is no hard rule for choosing the best layer through the
analysis, rather we analyze for trends in layer separability
and original/perturbed image distances. Future work is to
further refine the analysis to conclusively identify the best
layer. However, also notice that all of the layers we identi-
fied were better than baselines, giving further merit to our
methodology.

5.1. MobileNetV2 Whitebox Model

Finally, we can introduce a new whitebox model for our
SVHN transfer setup and perform analysis first testing of
the AA method. This allows us to analyze and choose a
layer to transfer from with no prior knowledge from the
main experiment. In this case, we will use the MobileNetV2
model which performs competitively with the other models
(Table 3). The choice of model here is somewhat arbitrary,
the goal of this section is to find a well transferring layer
to use AA from without using prior information and with-
out performing expensive layer sweep testing to a blackbox
model.

Fig. 6 (top) again shows the average intra-class and
inter-class angular distance between features at each layer
as measured over 100 examples of each class. Interestingly,
we see a few layers towards the end of the network with
good class-wise feature separability (i.e. layers 13-15). We
then measure the original/perturbed distance of examples
from layers 12-18 which are in and around this region of
separability, shown in Fig. 6 (bottom). From this data,
layers 13 and 14 have higher 2D distance relative to im-
age domain distance, and these layers are both in the region
of good separability. Since both L = 13 and L = 14 ap-
pear to have very similar characteristics, we measure both
attacks performance in a MNv2→RN50 test, shown in Ta-
ble 5. Not surprisingly from how similar the analysis was,
these layers perform very similarly, so we choose L = 13
and run tests to the other models from Table 3. Again, the
merit of the AA is confirmed. Across all models and all
metrics, AAL=13 is better than the baselines.



Figure 6: Analysis of SVHN trained MobileNetV2 layer-
wise feature similarity (top) and distance between original
and adversarial examples generated with Activation Attack
from this whitebox model (bottom).

6. Sample Perturbed Images

Finally, we can visualize some perturbed CIFAR-10 im-
ages from the baseline attacks and our AA. Fig. 7 shows the
baseline attacks against the DN121L=21 and V GG19L =
6 AA’s on the same image being perturbed toward the same
target image/class. One observation is that the AA pertur-
bations at higher epsilons are more structured and appear to
have a pattern. This is as opposed to the ITCM and TPGD
examples which appear to have more random perturbations
that do not form structure.

Fig. 8 shows different examples for different attacks. It
also shows how AA’s from different layers perturb the im-
ages. From this figure, it is not obvious exactly what fea-
tures AA’s from different layers are perturbing. However, it
is an interesting future work to try to interpret exactly what
features are being perturbed and why.
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Table 4: SVHN Numerical Transfer Results (ε = 0.07)

Transfer Scenario Attack Error uTR tSuc tTR
DN121 → RN50 itcm 72.35 73.79 67.65 70.10

tpgd 69.57 70.81 64.87 66.76
tmifgsm 83.10 85.56 73.25 77.74
AAL=17 91.16 91.78 82.96 85.34

DN121 → VGG19 itcm 59.49 60.67 54.63 56.71
tpgd 53.63 54.50 48.72 50.15
tmifgsm 77.60 79.90 68.22 72.50
AAL=17 88.02 88.74 79.16 81.80

DN121 → MobileNetv2 itcm 76.82 77.61 70.01 72.53
tpgd 75.64 76.69 69.14 71.05
tmifgsm 84.19 86.52 72.57 77.06
AAL=17 92.24 92.81 82.85 85.39

DN121 → RN152 itcm 67.43 68.84 62.99 65.45
tpgd 63.42 64.61 58.86 60.73
tmifgsm 79.80 82.29 70.94 75.54
AAL=17 89.39 90.05 81.19 83.83

DN121 → DPN92 itcm 65.45 66.74 60.85 63.11
tpgd 61.57 62.63 57.21 58.96
tmifgsm 78.92 81.31 69.90 74.45
AAL=17 88.59 89.21 80.37 82.81

VGG19 → RN50 itcm 80.84 82.56 74.05 81.11
tpgd 82.53 84.08 77.15 82.63
tmifgsm 89.00 89.78 70.48 78.39
AAL=6 92.34 92.99 83.42 86.74

VGG19 → DN121 itcm 78.88 80.57 72.51 79.28
tpgd 81.59 83.13 76.07 81.14
tmifgsm 87.33 88.09 69.31 76.91
AAL=6 91.50 92.12 82.69 85.97

VGG19 → MobileNetv2 itcm 76.43 78.12 68.34 75.25
tpgd 78.63 80.11 71.40 76.66
tmifgsm 85.52 86.23 64.27 71.70
AAL=6 89.72 90.49 78.90 82.09

VGG19 → RN152 itcm 74.11 75.70 68.22 74.81
tpgd 76.20 77.83 71.15 76.53
tmifgsm 85.33 86.15 67.02 74.69
AAL=6 89.40 90.11 79.74 82.75

VGG19 → DPN92 itcm 76.21 77.87 69.68 76.63
tpgd 78.10 79.58 72.95 78.36
tmifgsm 86.35 87.12 67.08 74.57
AAL=6 90.23 90.85 80.44 83.62



Table 5: SVHN MobileNetV2 Transfer Results

Transfer Scenario Attack Error uTR tSuc tTR
MNv2 → RN50 itcm 47.93 48.90 42.78 43.91

tpgd 49.49 50.31 43.61 44.53
tmifgsm 67.49 69.09 58.23 60.04
AAL=13 83.76 84.68 72.66 75.55
AAL=14 83.76 84.62 72.62 75.57

MNv2 → VGG19 itcm 35.70 36.44 30.94 31.75
tpgd 34.76 35.32 29.25 29.84
tmifgsm 61.04 62.58 52.10 53.83
AAL=13 78.28 79.19 67.85 70.49

MNv2 → DN121 itcm 52.25 53.32 47.83 49.04
tpgd 56.92 57.83 51.86 52.92
tmifgsm 67.62 69.27 60.23 62.17
AAL=13 85.00 85.84 75.11 78.06

MNv2 → RN152 itcm 41.05 41.88 36.73 37.69
tpgd 42.37 43.09 37.43 38.26
tmifgsm 63.81 65.48 55.79 57.65
AAL=13 80.74 81.62 70.13 73.00

MNv2 → DPN92 itcm 43.31 44.17 39.16 40.15
tpgd 44.00 44.75 38.96 39.77
tmifgsm 64.29 65.87 56.17 57.94
AAL=13 80.89 81.66 70.35 73.12

Figure 7: Perturbations of baseline attacks and most effective AA’s on same source image, each being perturbed towards the
same target image/class. Dataset: CIFAR-10.



Figure 8: Perturbations of baseline attacks and AA’s from different layers on different images. Dataset: CIFAR-10.


