
Figure 5: Real-world grasping objects that range greatly
in size and appearance. Left: about 1000 visually and
physically diverse training objects used for joint finetuning.
Right: the unseen test objects.

A. RCAN Architecture
The generator G is parameterized by weights of a con-

volutional neural network, summarized in Figure 7, and fol-
lows a U-Net style architecture [48] with downsampling
performed via 3×3 convolutions with stride 2 for the first 2
layers, and average pooling with 3× 3 convolution of stride
1 for the remaining layers. Upsampling was performed via
bilinear upsampling, followed by a 3 × 3 convolutions of
stride 1, and skip connections were fused back into the net-
work via channel-wise concatenation, followed by a 1 × 1
convolution. All layers were followed by instance normal-
ization [63] and ReLU non-linearities. The discriminator D
is also parameterized by weights of a convolutional neural
network with 2 layers of 32, 3×3 filters, followed by a layer
of 64, 3 × 3 filters, and finally a layer of 128, 3 × 3 filters.
The network follows a multi-scale patch-based design [3],
where 3 scales of 472× 472, 236× 236, and 118× 118, are
used to produce domain estimates for all patches which are
then combined to compute the joint discriminator loss.

B. QT-Opt Architecture
The action space of [27], which consists of grip-

per pose displacement and an open/close command, re-
mains unchanged in our paper, and is defined as at =
(tt, rt, gclose,t, gopen,t, et), containing Cartesian translation
tt ∈ R3, sine-cosine rotation encoding rt ∈ R2, a one-
hot vector gripper open/close command [gclose,t, gopen,t] ∈
{0, 1}2, and a learned stopping criterion et. The reward
function is sparse, consisting of a reward of 1 following a
successful grasp, or 0 for an unsuccessful grasp, and −0.05

Figure 6: The Q-function of the grasping algorithm. The
source image x (either from the randomized domain or real-
world domain) and generated canonical image xa are con-
catenated (channel-wise) and processed by a convolutional
neural network (and fused with action and state variables)
to produce a scalar representing the Q value Qθ(s, a).

on all other transitions. Summarized in Figure 6, the Q-
function follows the same architecture as [27] (originally
inspired by [34]).

Rather than a single RGB image input, our network takes
in a 6 channel image, consisting of channel-wise concatena-
tion of the source image x (either from the randomized do-
main or real-world domain) and generated image xa. Fea-
tures are extracted from these images via 7 convolutional
layers and then merged with a transformed action and state
vector (which have passed through 2 fully-connected lay-
ers) via element-wise addition. The merged streams are
then processed by a further 9 convolution layers and 2 fully-
connected layers, resulting in a scalar output representing
the Q value Qθ(s, a). Each layer, excluding the final, uses
batch normalization [22] and ReLU non-linearities. A sum-
mary of the architecture can be seen in Figure 6.



Figure 7: Network architecture of the generator function G. An RGB image from the source domain (either from the
randomized domain or real-world domain) is processed via a U-Net style architecture [48] to produce a generated RGB
image xa, and auxiliaries that includes a segmentation mask ma and depth image da. These auxiliaries forces the generator
to extract semantic and depth information about the scene and encode them in the intermediate latent representation, which
is then available during the generation of the output image.



(a) Randomized-to-canonical samples.

(b) Real-to-canonical samples.

Figure 8: Additional sample outputs of our trained generator G when given randomized sim images (8a) and real images
(8b).


