
End-to-End Supervised Product Quantization for Image Search and

Retrieval - Supplementary Material

1 Summary

In this supplement, we provide:

1. The hyper-parameters and training details for each experiment.

2. Ablation study of the hyperparameters.

2 Training details

The DPQ loss function is composed of several terms:

− αhard
B∑
b=1

logphardb,yb
− αsoft

B∑
b=1

logpsoftb,yb

+
βhard

2B

B∑
b=1

||hardb − oyb ||
2 +

βsoft

2B

B∑
b=1

||softb − oyb ||
2

+
µ

2

M∑
m=1

K∑
k=1

(
1

B

B∑
b=1

qbm(k)

)2

− η

2B

M∑
m=1

K∑
k=1

B∑
b=1

(
qbm(k)

)2
The two terms in the first line are the softmax loss for the hard and soft representations. Where

B is the batch size, phardb,yb
, and psoftb,yb

are the probability of the b− th sample belonging to its correct

class, yb, according to the hard and soft representation respectively. We denote by αhard and αsoft

the weights of the hard softmax loss and the soft softmax loss respectively.
The two following terms in the second line are the central loss for the hard and soft represen-

tations. Where oyb is the center vector of the correct class, yb, and hardb and softb are the hard
and the soft representations of the b− th sample. We denote by βhard and βsoft the weights of the
hard central loss and the soft central loss respectively.

The term in the third line is the Gini Batch Diversity regularization. Where M is the number
of partitions used by DPQ, and K is the number of centroids for each partition. The probability
of the m− th sub-vector of the b− th sample being assigned to the k − th centroid is qbm(k). The
influence of this regularization is controlled by the weight µ.

Finally, the term in the last line is the Gini Sample Sharpness. The influence of this regular-
ization is controlled by the weight η.

We now provide the training details and the hyper-parameters of each experiment.

1

2.1 Single-domain category retrieval

2.1.1 CIFAR10 - First Protocol

We train DPQs with M = 4 partitions and K = (8, 64, 512, 4096) centroids per partition, to match
our experiments with the protocol. DPQ is learned on top of the embedding layer of the base
network, that has U = 500 units. We start by adding a fully connected layer, F , on top of U , with
V = M ·K units. We then split F ∈ RV into M equal parts: F = (F1, F2, . . . , FM) where Fi ∈ RK .

We then apply a softmax function that outputs a probability distribution, pm, with K entries.
The centroid vectors, Cm, for each partition {1 . . .m} are chosen to be in R30 such that the

final soft and hard representations are in R120.
The optimization is using SGD with a learning rate of 0.001, and a momentum of 0.9. A weight

decay of 0.0015 is introduced to the DPQ loss function. The optimization is performed for 200K
iterations.

The hyper-parameter values are described in the following table:

Hyper-parameter Value

αhard 1.0

αsoft 1.0

βhard 0.5

βsoft 0.5

µ 0.777

η 0.06

B 200

K {8, 64, 512, 4096}
M 4

Where K is chosen to match the 12, 24, 36 and 48 bits in the experiment protocol.

2.1.2 CIFAR10 - Second Protocol

DPQ is learned on top of the embedding layer of the VGG-CNN-F base network described in [1],
that has U = 4096 units. We start by adding a fully connected layer, F , on top of U , with V = M ·K
units. We then split F ∈ RV into M equal parts: F = (F1, F2, . . . , FM) where Fi ∈ RK . We then
apply a softmax function that outputs qm, with K = 16 entries.

The centroid vectors, Cm, for each partition {1 . . .m} are chosen to be in R32 such that the
final soft and hard representations are in R32·M .

The network is fine-tuned using the weights of [1].
The optimization is using SGD with a learning rate of 0.0005, and a momentum of 0.9. A

weight decay of 0.004 is introduced to the DPQ loss function. The optimization is performed for
12K iterations.

2

The hyper-parameter values are described in the following table:

Hyper-parameter Value

αhard 1.0

αsoft 1.0

βhard 0.1

βsoft 0.1

µ 0.9

η 0.12

B 200

K 16

M {4, 6, 8, 12}

Where M is chosen to match the 16, 24, 32 and 48 bits in the experiment protocol.

2.1.3 CIFAR10 - Third Protocol

The same configuration from the second protocol is used.

2.1.4 ImageNet-100

In this protocol, suggested by [2], DPQ is learned on top of the embedding layer of the ResNet V2
50 [3]. We start by adding a fully connected layer, F , on top of U , with V = M · K units. We
then split F ∈ RV into M = 8 equal parts: F = (F1, F2, . . . , FM) where Fi ∈ RK . We then apply a
softmax function that outputs qm, with K entries. We use values of K = {4, 16, 256} to follow the
protocol of [2] which is using {16, 32, 64} bits.

The centroid vectors, Cm, for each partition {1 . . .m} are chosen to be in R64 such that the
final soft and hard representations are in R512.

The network is fine-tuned using the weights of [3].
The optimization is using AdaGrad [4] with a learning rate of 0.1, and a weight decay of 0.0001.

The optimization is performed for 30K iterations.
The hyper-parameter values are described in the following table:

Hyper-parameter Value

αhard 1.0

αsoft 1.0

βhard 0.25

βsoft 0.25

µ 80

η 0.82

B 200

K {4, 16, 256}
M 8

Where K is chosen to match the 16, 32 and 64 bits in the experiment protocol.

2.2 Cross-domain category retrieval

The input of DPQ is the fixed representation computed by applying the VGG-128 [1] pre-trained
network of [1] and extracting the embedding layer in the 2-layer experiment, and the layer before

3

the embedding layer in the 3-layer experiment. A fully connected layer with U = 2048 units is
learned on top of the input. A Batch Normalization [5] layer and a ReLU activation is then applied.
The output is then split into M = 8 equal parts: F = (F1, F2, . . . , FM), where Fi ∈ R256. On each
sub-vector, Fi, we apply a softmax function that outputs qm, with K = 256. The centroid vectors,
Cm, are chosen to be in R64. Therefore, both the final hard and soft representations are in R512.

The optimization is using AdaGrad [4] with a learning rate of 0.1. A weight decay is not being
used. The optimization is performed for 30K iterations.

The hyper-parameter values are described in the following table:

Hyper-parameter Value

αhard 1.0

αsoft 1.0

βhard 0.5

βsoft 0.5

µ 80.0

η 0.82

B 200

K 256

M 8

2.3 Image classification

The exact same network trained in 2.2 is used for the classification experiment.

3 Ablation Study

In addition to the study of the effect of the joint central loss (Fig. 2 in the paper), we show the
effect of the regularization terms, GiniBatch and GiniSample, on the results of the cross-domain
experiments.

3.1 GiniBatch

The table below shows the effect of the GiniBatch hyperparameter on the mAP metric in the cross-
domain experiments. The hyperparameter of GiniSample was fixed at 0.8 and the hyperparameter
of the join central loss was fixed at 0.25.

0 20 40 60 80

Caltech 0.3467 0.3955 0.4095 0.4099 0.4086

Caltech+IntraNorm 0.3596 0.41601 0.4257 0.4246 0.4245

VOC 0.5407 0.51081 0.5254 0.53731 0.5353

VOC+IntraNorm 0.5475 0.558 0.5625 0.5645 0.5636

ImgNet 0.2647 0.3134 0.323 0.324 0.324

ImgNet+IntraNorm 0.25496 0.3149 0.3239 0.3253 0.3231

3.2 GiniSample

The table below shows the effect of the GiniSample hyperparameter on the mAP metric in the cross-
domain experiments. The hyperparameter of GiniBatch was fixed at 80 and the hyperparameter
of the joint central loss was fixed at 0.25.

4

0 0.2 0.4 0.6 0.8

Caltech 0.365 0.3756 0.3952 0.411 0.4118

Caltech+IntraNorm 0.3949 0.4059 0.4226 0.4276 0.4287

VOC 0.516 0.521 0.519 0.5278 0.5372

VOC+IntraNorm 0.5291 0.5513 0.5609 0.5654 0.5643

ImgNet 0.24878 0.2861 0.317 0.3269 0.3272

ImgNet+IntraNorm 0.2491 0.2837 0.3182 0.3277 0.3276

References

[1] Chatfield, K., Simonyan, K., Vedaldi, A., Zisserman, A.: Return of the devil in the details:
Delving deep into convolutional nets. arXiv preprint arXiv:1405.3531 (2014)

[2] Loncaric, M., Liu, B., Weber, R.: Learning hash codes via hamming distance targets. arXiv
preprint arXiv:1810.01008 (2018)

[3] He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: European
conference on computer vision, Springer (2016) 630–645

[4] Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning and stochas-
tic optimization. Journal of Machine Learning Research 12(Jul) (2011) 2121–2159

[5] Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In: International conference on machine learning. (2015) 448–456

5

