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This supplementary material provides additional details
that were not included in the main text due to space limi-
tations. First, in Section 1 we provide additional informa-
tions about the training process. Then, we investigate the
potential of regressing details like hair and clothing with
our approach (Section 2) and extend our empirical evalua-
tion (Section 3). Finally, in Section 4 we describe in detail
the architecture of the models used in our experiments.

1. Training Details
During training we randomly rotate and flip the input im-

ages, rescale the bounding boxes and also introduce color
jittering in the RGB input case. All input images are
rescaled to 224 × 224 before feeding them in the encoder.
For mixed training with Human3.6M [6] and UP-3D [10],
since UP-3D is significantly smaller than Human3.6M we
do not uniformly sample from all images. Instead, first we
randomly pick one of the two datasets with probability 0.5,
and then we select an image from this dataset uniformly at
random. This ensures that an equal number of in-the-wild
and indoor examples are included in our batch.

2. Clothing and hair
As suggested in the main manuscript, our approach

should be able to capture details like hair and clothing
which are not modeled by typical human body models. To
demonstrate this potential, we use the data of Alldieck et
al. [1] for training and apply our model on hold-out se-
quences. Interestingly, our regressed mesh (Fig. 1) indeed
captures some rough details (e.g., hair bun and shorts). We
clarify that these results are purely to demonstrate feasibil-
ity and the data is limited for a proper evaluation, but we
believe this is a promising direction for future work.

3. Further experimental exploration
In the main manuscript we report results using im-

ages from Human3.6M and UP-3D, that provide 3D shape
ground truth for training. Although we can expect to have
access to such ground truth for indoor datasets (i.e., Hu-
man3.6M), in-the-wild examples do not typically come with

Image Regressed mesh Shape + Texture

Figure 1: Qualitative results on the data of Alldieck et
al. [1]. From left to right: input image, regressed mesh,
ground truth texture applied on the regressed mesh.

Method MPJPE Reconst. Error

HMR [8] 88.0 58.1
Ours (H3.6M + LSP + MPII) 78.6 56.6

Ours (H3.6M + UP-3D) 74.7 51.9

Table 1: Evaluation of our approach on Human3.6M (Pro-
tocol 1) for weaker 2D annotations. The numbers are mean
joint errors in mm. Training with 2D ground truth only
for in-the-wild examples leads to less accurate results com-
pared to our model trained on UP-3D data. However, we are
still able to outperform [8] which is trained on significantly
more data than our approach.

3D annotations. Here we demonstrate that our approach is
applicable even when these annotations are not available.
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Figure 2: Qualitative results on Human 3.6M with parts segmentation input. With light pink color we indicate the regressed
non parametric shape and with light blue the SMPL model regressed from the previous shape.
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Figure 3: Qualitative results on Human3.6M with DensePose input. With light pink color we indicate the regressed non
parametric shape and with light blue the SMPL model regressed from the previous shape.

To this end, we ignore the UP-3D data, and instead train
with images from MPII [2] and LSP [7] that provide only
2D keypoint annotations. Effectively, for these examples,
we use only the 2D reprojection loss and not the 3D shape
loss. The results for this setting are reported in Table 1. We
have also included the results of [8] that trains in a simi-

lar setting, i.e., using only 2D annotations for in-the-wild
examples. Although the results of this training setting are
worse compared to our best model trained on Human3.6M
and UP-3D, we are still able to outperform [8] although they
use significantly more data (i.e., COCO [11] and MPI-INF-
3DHP [12]).
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Figure 4: Visualization of our results from novel viewpoints. Rows 1-5: LSP [7]. Rows 6-7: Human3.6M [6]. From left
to right: Input image, Non-parametric shape, Non-parametric shape (side view), Parametric shape, Parametric shape (side
view).

Moreover, in Figure 2 and Figure 3 we include qualita-
tive results when using part segmentations and DensePose

[3] images respectively as the input representation. We can
see that even with non-perfect detections, i.e., parts of the
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Figure 5: Graph Residual Block. Our basic building block
for the Graph CNN is a redesign of the Bottleneck Residual
Block [4]. GN stands for Group Normalization [13], and the
Linear layers are simply per-vertex fully connected layers.
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Figure 6: Graph Residual Block v2. This is the modified
version of the Graph Residual Block when the number of
input features is different from the number of output fea-
tures.

body missing in some difficult poses, the network is still
able to correctly regress the 3D shape.

Finally, in Figure 4 we present results of our approach
visualized also from a novel viewpoint. This type of vi-
sualization allows us to inspect the accuracy of our results
beyond the visible side which, and focus on the non-visible
parts which is where we typically observe most errors.

4. Model Architecture
4.1. Graph CNN

As discussed in the main manuscript, the basic building
block that we use in the Graph CNN is the Graph Resid-
ual Block depicted in Figure 5. It resembles the Bottleneck
Residual Block [4], but we replace 1× 1 convolutions with
per-vertex Linear (fully connected) layers, 3 × 3 convolu-
tions with the Graph convolutions proposed in [9] and Batch
Normalization [5] with Group Normalization [13]. When-
ever the number of input channels is different from the num-
ber of output channels, we feed the input to an additional
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Figure 7: Graph CNN. Our Graph CNN makes use of the
Graph Residual Block (GRB) of Figure 5 and Figure 6. The
network eventually splits in 2 branches that predict the 3D
shape and camera parameters s, tx, ty respectively.
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Figure 8: Fully Connected Residual Block. This fig-
ure depicts the residual block that is used in the MLP that
regresses the SMPL parameters from the 3D shape. BN
stands for Batch Normalization [5].

Linear layer that maps it to the correct feature map size be-
fore adding it to the output, as seen in Figure 6. Using this
Graph Residual Block, the full network architecture used in
all our experiments is depicted in Figure 7.

4.2. SMPL regressor

To estimate the SMPL parameters from the regressed
shape we use a simple MLP with skip connections. The in-
put to the MLP is the regressed 3D shape together with the
template SMPL shape, both subsampled by a factor of 4.
Subsampling here is essential to avoid the explosion in the
number of parameters for the fully connected layers. Also,
we found that including the template 3D shape in the input
speeds up the learning significantly. The network architec-
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Figure 9: SMPL Regressor. This figure presents the ar-
chitecture of the MLP that regresses the SMPL parameters
from the 3D shape. RB stands for the Fully Connected
Residual Block of Figure 8.

ture is shown in Figure 9. The input size is 1723 × 3 × 2
(3D vertex coordinates for both the output and the template
mesh), whereas the output size is 24 × 3 × 3 + 10 (rota-
tion matrices for each of the 24 joints and 10-dimensional
SMPL shape parameters).
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