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Abstract

This document contains the supplementary materials to
the main paper.

1. Detailed Mathematical Formulation of
Layer 2 of the ReLPV Block

In this section, we elaborate on each step of the Layer 2
of ReLPV block which is at the core of our ReLPV block.

Let f(x) be the single channel feature map of size 1×d×
h×w that is output by Layer 1 of the ReLPV block. Here, h,
w, and d denotes the height, width, and depth of the feature
map, respectively. For simplicity, we will drop the channel
dimension and rewrite the size of f(x) as d× h×w. Here,
x ∈ Z3 are the 3D coordinates of the elements in f(x).

Every x in f(x) has a n × n × n 3D neighborhood de-
noted by Nx which is defined in Equation 1. We provide
detailed experimental analysis in the manuscript on the ef-
fect of varying n on the performance of the ReLPV block
in 3D CNNs meant for video classification task.

Nx = {y ∈ Z3 ; ‖ (x− y) ‖∞≤ r ;n = 2r + 1; r ∈ Z+}
(1)

For all positions x = {x1, x2, . . . , xd·h·w} of the feature
map f(x), we use local 3D neighborhoods, f(x − y),∀y ∈
Nx to derive the local frequency domain representation us-
ing Short Term Fourier Transform (STFT) as defined in
Equation 2.

F (v, x) =
∑

yi∈Nx

f(x− yi) exp
−j2πvT yi (2)

Here i = 1, . . . , n3, v ∈ R3 is a 3D frequency variable,
and j =

√
−1. Using vector notation [3], we can rewrite

Equation 2 as shown in Equation 3.

F (v, x) = wTv fx (3)

Here, wv is a complex valued basis function (at fre-
quency variable v ) of a linear transformation, and is defined
as shown in Equation 4.

wTv = [exp−j2πvT y1 , exp−j2πvT y2 , . . . , exp−j2πvT yn3 ],
(4)

and fx is a vector containing all the elements from the
neighborhood Nx, and is defined as shown in Equation 5.

fx = [f(x− y1), f(x− y2), . . . , f(x− yn3)]T (5)

In our work, we consider 13 lowest non-zero frequency
variables v1, v2, . . . , v13. Low frequency variables are used
because they usually contain most of the information, and
therefore they have better signal-to-noise ratio than the high
frequency components [1] (see Section 2). The values of
these frequency variables are already discussed in the main
paper. Thus, from Equation 3, the local frequency domain
representation for the above frequency variables is defined
as shown in Equation 6.

Fx = [F (v1, x), F (v2, x), . . . , F (v13, x)]T (6)

At each position x, after separating the real and imagi-
nary parts of each component, we get a vector as shown in
Equation. 7.

Fx = [<{F (v1, x)},={F (v1, x)},<{F (v2, x)},
={F (v2, x)}, . . . ,<{F (v13, x)},={F (v13, x)}]T (7)

Here, <{·} and ={·} return the real and imaginary parts
of a complex number, respectively. The corresponding
26 × n3 transformation matrix can be written as shown in
Equation 8.

W = [<{wv1},={wv1}, . . . ,<{wv13},={wv13}]T (8)



Hence, from Equation 3 and 8, the vector form of STFT
for all the 13 frequency points v1, v2, . . . , v13 can be written
as shown in Equation 9.

Fx = Wfx (9)

Since, Fx is computed for all positions x of the in-
put f(x), it results in an output feature map with size
26 × d × h × w. This feature map is then passed as input
to the Layer 3 of the ReLPV block.

2. Decorrelation Property of STFT and Reason
for Selecting Low Frequency Variables

As mentioned in the manuscript, some important prop-
erties of Short Term Fourier Transform (STFT) is its abil-
ity to decorrelate the input signal and to compact the en-
ergy (information) contained in a signal. These properties
are inherent to STFT since it belongs to the family of or-
thogonal transforms such K-L transform, Walsh-Hadamard
transform (WHT), and Discrete Cosine Transform (DCT)
[4]. All the above orthogonal transforms have the following
properties in common.

• Orthogonal transforms have the tendency of decorre-
lating the input signals [4]. For example, consider a
signal containing temperature as a function of time.
Now, given the value of a current sample of the sig-
nal, the value of its next sample can be predicted with
reasonable confidence to be close to the current one,
i.e., two consecutive time samples are highly corre-
lated. On the other hand, after an orthogonal trans-
form, such as Fourier transform, knowing the magni-
tude of a certain frequency component, one has little
idea in terms of the magnitude (or the energy) of the
next frequency component, i.e., the two components
are much less correlated than the time samples before
the transform. The same property holds true for sig-
nals in multiple dimensions such as images and videos
[2]. In images and videos, decorrelation is achieved
due to STFT’s insensitivity to the correlation coeffi-
cient of images and videos [2].

• Orthogonal transforms tend to compact the energy (in-
formation) contained in the signal into a small number
of signal components [4]. For example, after Fourier
transform, most of the energy (information) will be
concentrated in a relatively small number of low fre-
quency components. Most of the high frequency com-
ponents carry little energy. Moreover, low frequency
components have better signal-to-noise ratio than the
high frequency components. It is for this reason that
we chose low frequency variables while computing
STFT.
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