
Point Cloud Oversegmentation with Graph-Structured Deep Metric Learning
(SUPPLEMENTARY)

Loic Landrieu1, Mohamed Boussaha2

Univ. Paris-Est, IGN-ENSG, 1 LaSTIG-STRUDEL, 2 LaSTIG-ACTE Saint-Mandé, France
loic.landrieu@ign.fr,mohamed.boussaha@ign.fr

1. Models configuration

In this section, we give the full hyper-parameterization of
all the networks used in the paper, for both oversegmenta-
tion and semantic segmentation tasks, and for both datasets.

1.1. Models configuration for oversegmentation

Our supervized oversegmentation model has a number
of critical hyper-parameters to tune, given in Table 1. We
detail here the rationale behind our choices.
Local neighborhood and adjacency graphs: For both
datasets, we find that setting the local neighborhood size
to 20 was enough for embeddings to successfully detect
objects’ border. Combined with our lightweight structure,
this results in a very low memory load overall. The
adjacency graph G requires more attention depending on
the dataset. For the dense scans of S3DIS, the 5-nearest
neighbors adjacency structure was enough to capture the
connectivity of the input clouds. For the sparse scans of
vKITTI, we added Delaunay edges [1] (pruned at 50 cm)
such that parallel scans lines would be connected.

Networks configuration: For the LPE and the PointNet
structure in the spatial transform, we find that shallow and
wide architectures works better than deeper networks. We
give in Table 1 the size of the linear layers, before and
after the maxpool operation. Over 250, 000 points can be
embedded simultaneously on 11GB RAM in the training
step, while keeping track of gradients.

Intra-edge factor: The graph-structured contrastive loss
presented in 3.2.2 requires setting a weight µ determining
the influence of inter-edges with respect to intra-edge.
Since most edges of G are intra-edges in practice, we
define µ̃ such that µ = µ̃c with c = | E |/| V | the average
connectivity of G. Note that c can be determined directly
from the construction of the adjacency graph (it is equal
to k in a k-nearest neighbor graph for example). A value
of µ̃ = 1 means that the total influence in ` of inter-edges
and intra-edges are identical. Since we are interested in

oversegmentation, we set µ̃ to 5 in all our experiments, but
note that the network is not very sensitive to this parameter,
as demonstrated experimentally: a value of µ̃ = 3 gives a
relative performance of (−0.2,−0.6,+1.5) while a value
of 8 gives (+0.1,−0.5,+1.4).

Regularization Strength: The generalized minimal
partition problem defined in 3.2.1 requires setting the reg-
ularization strength factor λ, determining the cost of edges
crossing superpoints. We remark that the LPE produces
embeddings of points with an euclidean distance of at least
1 over predicted objects’ borders. Some calculus shows
us that for a λ ≤ 1/(2c), the solution f? of (8) should
predict superpoints borders at all edges whose vertices have
a difference of embeddings of at least 1 (note that there
is no guarantee that the greedy `0-cut pursuit algorithm
will indeed predict a border). We use this value to define a
normalized regularization strength λ̃ such that λ = λ̃/(4c),
whose default value is 1.

Regularization path: To obtain the regularization paths
in Figure 7, we first train the network with a regularization
strength of λ̃ = 1 (see 3.2.2). We then compute partitions
with λ̃ varying from 0.2 to 6 with no fine-tuning required.

Smallest superpoint: To automatically select a minimal
superpoint size (in number of points) appropriate to the
coarseness of the segmentation, we heuristically set:

nλ̃min =

[
(max

(
1

2
n
(1)
min, n

(1)
min +

1

2
n
(1)
min log(λ̃)

)]
where n(1)min is a dataset-specific minimum superpoints size
for λ̃ = 1. For example, for n(1)min = 50, the smallest
superpoint allowed for a small regularization strength
λ̃ = 0.2 will be 33, while it is 70 for the coarse partition
obtained with λ̃ = 6. While specific applications may
require setting up this variable manually, this allowed us
to produce the regularization paths in Figure 7 while only
varying λ̃.

parameter shorthand section S3DIS vKITTI
Local neighborhood size k 3.1 20

parameters - - 13,816
LPE configuration - 3.1 [32,128],[64,32,32,m]
ST configuration - 3.1 [16,64],[32,16,4]

Embeddings dimension m 3.1 4
Adjacency graph G 3.2 5-nn 5-nn + Delaunay

exponential edge factor σ 3.2.1 0.5
intra-edge factor µ̃ 3.2.3 5
spatial influence αspatial 3.4 0.2 0.02

smallest superpoint n
(1)
min 3.4 40 10

epochs - - 50
decay event - - 20,35,45

Table 1: Configuration of the embedding network for the S3DIS and vKITTI datasets.

parameter S3DIS vKITTI
parameters 278,897 118,737

Superpoint embedders configuration [[64,64,128,128,256], [256,64,32]] [[64,64,128,256], [128,32,32]]
STN configuration [[64,64,128], [128,64]] [[32,32,64], [64,32]
subsampling hops 4
max SPgraph size 768

λ̃ 0.1 0.5
nmin 25 15

epochs 350 100
decay event 180,250,280,320 40,50,60,70,80

Table 2: Configuration of the semantic segmentation network. All values not mentioned in this table use default parameters
from [6]

Optimization: Given the small size of our network,
we train our network for a short number of epochs (see
Table 1), with decay events set at 0.7. We use Adam
optimizer [5] with gradient clipping at 1 [4]. Training takes
around 2 hours per fold on our 11GB VRAM 1080Ti GPU.

Mini-batches: For graph-based clustering, the training
phase processes batches of 16 point clouds at once, for
which a subgraph of size 10 000 points is extracted. For
the clustering-based segmentation, which is more memory
intensive, and since subgraphs have to be larger to be
meaningfully covered by the initial voxels, we set a batch
size of 1 and a subgraph of 100 000. As a consequence, we
replace the batchnorm layers of the LPEs by group norms
with 4 groups [?].

Augmentation: In order to build more robust networks, we
added Gaussian noise of deviation 0.03 clamped at 0.1 on
the normalized position and color of neighborhood clouds.
We also added random rotation of the input clouds for the
network to learn rotation invariance. To preserve orienta-
tion information, the clouds are rotated as a whole instead
of each neighborhood. This allows the spatial transform to

detect change in orientation, which can be used to detect
borders.

1.2. Models configuration for semantic segmenta-
tion

We used the open-source superpoint-graph implementa-
tion github/loicland/superpoint-graph with-
out any modification beyond changing the oversegmenta-
tion step and some changes in the hyper-parameters. The
full parameterization is given in Table 2.

To compensate for the edges missed by the `0-cut pursuit
approximation, due in part to its ignoring the spherical na-
ture of the embeddings, we set the regularization strength λ̃
lower than 1 for both datasets. This help improve the accu-
racy and border recall. The subsequent decrease in border
precision is compensated by the fact that the SPG, through
its context leveraging module, can learn to propagate the
semantic information to small superpoints. For the same
reason, we chose a lower superpoint size for S3DIS from
the segmentation experiments.

We extended the superpoint graph subsampling thresh-
old to 4-hops instead of 3, because our method SSP tends to
produce thin components near interfaces. Since the vKITTI

github/loicland/superpoint-graph

Method OA mAcc mIoU ceiling floor wall beam column window door chair table bookcase sofa board clutter
A5 PointNet [8] – 49.0 41.1 88.8 97.3 69.8 0.1 3.9 46.3 10.8 52.6 58.9 40.3 5.9 26.4 33.2

A5 SEGCloud [9] – 57.4 48.9 90.1 96.1 69.9 0.0 18.4 38.4 23.1 75.9 70.4 58.4 40.9 13.0 41.6
A5 PointCNN [7] 85.9 63.9 57.3 92.3 98.2 79.4 0.0 17.6 22.8 62.1 80.6 74.4 66.7 31.7 62.2 56.7

A5 SPG [6] 86.4 66.5 58.0 89.4 96.9 78.1 0.0 42.8 48.9 61.6 84.7 75.4 69.8 52.6 2.1 52.2
A5 SSP + SPG (ours) 87.9 68.2 61.7 91.9 96.7 80.8 0.0 28.8 60.3 57.2 85.5 76.4 70.5 49.1 51.6 53.3

PointNet [8] in [2] 78.5 66.2 47.6 88.0 88.7 69.3 42.4 23.1 47.5 51.6 42.0 54.1 38.2 9.6 29.4 35.2
Engelmann et al. [2] 81.1 66.4 49.7 90.3 92.1 67.9 44.7 24.2 52.3 51.2 47.4 58.1 39.0 6.9 30.0 41.9

Engelamnn in [3] 84.0 67.8 58.3 92.1 90.4 78.5 37.8 35.7 51.2 65.4 61.6 64.0 51.6 25.6 49.9 53.7
SPG [6] 85.5 73.0 62.1 89.9 95.1 76.4 62.8 47.1 55.3 68.4 73.5 69.2 63.2 45.9 8.7 52.9

PointCNN [7] 88.1 75.6 65.4 94.8 97.3 75.8 63.3 51.7 58.4 57.2 69.1 71.6 61.2 39.1 52.2 58.6
SSP + SPG (ours) 87.9 78.3 68.4 91.7 95.5 80.8 62.2 54.9 58.8 68.4 78.4 69.2 64.3 52.0 54.2 59.2

Table 3: Results on the S3DIS dataset on fold “Area 5” (top) and micro-averaged over all 6 folds (bottom). Intersection over
union is shown split per class, with the highest value over all methods in bold.

dataset is much smaller than S3DIS, we chose smaller net-
works to mitigate overfitting.

2. Residual Point Embedder
We have tested an alternative configuration for the lo-

cal point embedded, in which they were stacked in layers,
similarly to the classical convolutional architecture for im-
ages. We first introduce a slightly changed architecture, the
Residual Point Embedder RPE, whose design is based on an
LPE but takes a supplementary input eini. Instead of com-
puting a new embedding, the RPE computes a residual (1)
which is added to this initial embedding before normaliza-
tion (2):

R(Xi, xi) = MLP2 ([max (MLP1(Xi)) , xi]) (1)
RPE(xi, Xi, eini) = L2 (eini +R(Xi, xi)) (2)

The second change is the layers architecture. The RPEs in
the first layer compute the embeddings from the local geo-
metric and radiometric information alone, and their initial
embedding is set to 0 (3) (such that they behave exactly like
LPEs). The RPEs in subsequent layers compute new em-
beddings from the local radiometry and geometry as well
as the embeddings computed at the previous layer of the
points neighbors Eti (4). Note that for a point to be pro-
cessed by a layer, all its neighbors must have been embed-
ded by the previous layer. This allows the RPEs to have
increasingly broader receptive fields, and to correct errors
that might have been done by previous layers. Note that
the geometric information are only processed by the spatial
transform once, cascading its values to all residual layers.

e
(0)
i = RPE(0)([P̃i, Ri], [p̃i, ri], 0) (3)

e
(t+1)
i = RPE(t)([P̃i, E

(t)
i], [p̃i, ri, e

(t)
i], e

(t)
i) (4)

Alternatively, all initial embeddings can be set to 0, which
means that each layer computes a new embedding from the
local position and the embeddings of the previous layers.

As mentioned in the ablation study, while these networks
did perform well, their benefits shrink when a simple LPE
is given as many parameters.

3. Detailed results and illustration
We present in Table 3 the per-class IoU for the S3DIS

dataset. We illustrate the semantic segmentation results in
Figure 1. We also made a video illustration which can be
accessed at https://youtu.be/bKxU03tjLJ4.

References
[1] B. Delaunay et al. Sur la sphere vide. Izv. Akad. Nauk SSSR,

Otdelenie Matematicheskii i Estestvennyka Nauk, 7(793-
800):1–2, 1934. 1

[2] F. Engelmann, T. Kontogianni, A. Hermans, and B. Leibe. Ex-
ploring spatial context for 3d semantic segmentation of point
clouds. In ICCV, 3DRMS Workshop, 2017. 3

[3] F. Engelmann, T. Kontogianni, J. Schult, and B. Leibe. Know
what your neighbors do: 3d semantic segmentation of point
clouds. arXiv preprint arXiv:1810.01151, 2018. 3

[4] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio. Deep
learning, volume 1. MIT press Cambridge, 2016. 2

[5] D. P. Kingma and J. Ba. Adam: A method for stochastic opti-
mization. ICLR, 2015. 2

[6] L. Landrieu and M. Simonovsky. Large-scale point cloud se-
mantic segmentation with superpoint graphs. In CVPR. IEEE,
2018. 2, 3

[7] Y. Li, R. Bu, M. Sun, and B. Chen. PointCNN. arXiv preprint
arXiv:1801.07791, 2018. 3

[8] C. R. Qi, H. Su, K. Mo, and L. J. Guibas. Pointnet: Deep
learning on point sets for 3d classification and segmentation.
CVPR, IEEE, 1(2), 2017. 3

[9] L. P. Tchapmi, C. B. Choy, I. Armeni, J. Gwak, and
S. Savarese. SEGCloud: Semantic segmentation of 3D point
clouds. International Conference on 3D Vision, 2017. 3

https://youtu.be/bKxU03tjLJ4

(a) Input Point Cloud (b) Oversegmentation (c) Semantization (d) ground Truth

S3DIS
ceiling
floor
wall
column
beam
window
door
table
chair
bookcase
sofa
board
clutter
unlabelled

vKITTI
terrain
tree
vegetation
building
road
guard rail
traffic sign
traffic light
pole
misc
truck
car
van
unlabelled

Figure 1: Illustration of the results on the semantic segmentation. In the first row we show a successful semantization for a
complex scene of S3DIS. In the second row, we show a failure case in which a white board is oversegmented in too many
small superpoints. This makes their classification harder by the semantic segmentation network. In the third row we see a
successful semantization of an urban outdoor scene from vKITTI. On the fourth row, we can observe in the background road
signs with high color contrasts, which are segmented in small superpoints. This makes them very hard to classify and they
are missed by the semantic segmentation algorithm.

