Combinatorial persistency criteria for multicut and max-cut
Supplementary material

Jan-Hendrik Lange
Max Planck Institute for Informatics

Saarland University

Bjoern Andres
Max Planck Institute for Informatics
Bosch Center for Al

Paul Swoboda

Max Planck Institute for Informatics

University of Tiibingen

A. Proofs

Proof of Lemma 1.

Proof. Let 2 be an optimal solution of (P). Then 2* = p(z)
is also optimal and x} = . O

Proof of Lemma 2.

Proof. (i) Letx € MC and assume that z = ps(ry () ¢ MC.
Then there exists a cycle C' with exactly one cut edge in z, i.e.

zy = 1forsome f € Ec and z, = Oforalle € Ec \ {f}.
It holds that 2 = 1 and thus C crosses 6(U) exactly once,
which is impossible.

(ii) Let z € MC and assume that z = py(x) ¢ MC.

Then there is a cycle C' with zy = 1 for some f € Ec and
ze = 0foralle € Ec \ {f}. Since z < x there exists
anedge uwv = g € Ec, g # f withzy, = 1 and z, = 0.
Then, according to (1), there exists a uv-path P such that
xz. =0foralle € Ep\ E(U). Replace the cycle C with the
cycle induced by Ec A(EpU{g}). Repeating this argument
for all such edges g € E¢ yields a path P’ connecting the
endpoints of f such that z, = 0 for alle € Ep/ \ E(U),
which is a contradiction to zy = 1. O

Proof of Theorem 1.

Proof. First, we show that the mapping

T else

p(z) = {pﬁy)(x) ifzy #

is improving for the MAX-CUT problem. Let x € CUT,

z = p(z) and suppose x; # (. It holds that

<072> - <9,I> :af(zf _xf)+ Z ee(ze_xe)
e€S(U\{f}
= _‘9f|+ Z ee(ze_xe)
e€s(U)\{f}
<851+ > 6]
e€s(U\{f}

<0.
Similarly, for 8 = 0, we show that the mapping
pFop x) ifx 8
p() = {(ropsw)(@) ifay #
x else

is improving for the MULTICUT problem. Let x € MC,
z = p(z) and suppose x; # (. It holds that

0.2) = (0,2) = 00— 1)+ > Oel(ze — z)
e€s(U\{f}
<=0+ > 6]
e€s(U\{}
<0.

Finally, for 8 = 1, we show that the mapping
P x) ifxr#£0

p(z) = { s(u) () f

x else

is improving for multicut. Let z € MC, z = p(z) and
suppose x5 # (3. It holds that

0,2) = (0,2) =0,(1—0)+ > O(1—x)
e€s(U\{f}
<o+ D (1 -)
ee§(U)NE+
< -0+ > 6]
ecs(U)NE+

<0.

This concludes the proof. O

Proof of Lemma 3.

Proof. Condition (i) implies that the mapping p: X — X

defined by
Y if —
P(az){p (@) e, =y

T else

is improving. Condition (ii) implies p(x). = 8 forall xz. O

Proof of Corollary 1.

Proof. We use Lemma 3:

(1) Inthe case xyy = 1, Tyy = 1, Ty = 0 apply pﬁU). In
the case Ty = 1, Tyy = 0, Ty = 1 apply pﬁw). These
mappings are improving due to (5) and (6).

(11) In the case Tyw = 1, Tyv = 1’ Tyw = 0 apply
P{u,w} ©PsU)- In the case Zyw = 1, Ty = 0, Ty = 1
apply pyu,w} © Pscw)- These mappings are improving anal-
ogously to (i). In the additional case xy,, = 1, Tyy = 1,
Tyw = 1 apply the mapping p = piy,v,w} © Ps({u,v,w})- 118
improving, since

(0, p(x)) — (6, 2)
= Z 96(1—xe) _euv —euw _evw

e€d({u,v,w})
S Z 96(1 - xe) - Z He
e€d({u,v,w})NE+

e€d({u,v,w})NE+
<0. O

Proof of Theorem 2.

Proof. We use Lemma 3. Let y € MC(H) with y,, = 1
and suppose * € MC with x|, = y. Then there is a
multicut M of H such that y = 1,,. Due to (8), every
(multi-)cut of H has nonnegative weight. Therefore, there
exists some U C Vg withu € U and v ¢ U such that
(U, Vg \U) € M and

Z 0.z, = Z 6, > Z 0,. (16)

ecEpy ecM eE5(U,VH\U)

Let p¥(z) = (pvy ©Ps(vy)) (), then it follows from (9) and
(16) that

(0,p"(x)) — (0,2)

= Z 0.(1 —z.) — Z 0o

e€d (V) ecEy

<Y suew- Y
e€d(Vy)NET e€d(Vy)NE+

<0. 0

Proof of Theorem 3.

Proof. We use Lemma 3. Suppose y € CUT(H) with
Yupr = 1. Let U C Vg be such that y is the incidence
vector of 6(U, Vi \ U) in H and suppose x € CUT with
T|g,; = Y. We may assume that

>, ez D, e
e€o(U,Vu\U) ecd(U,V\Vy)

otherwise redefine U := Vi \ U. Now, let z = p¥(z) =
p(;A(U) (z), then it follows that

<972> - <95$> = Z Ge(ze - -Te)

eed(U)

= > 00-D+ D Oelze—)
ecd(U, Vg \U) e€d(U,V\Vn)

S Z _06 + Z |06|
e€d(U,Vy\U) e€d(U,V\Vy)

<0. O

Proof of Lemma 4.

Proof. As H satisfies Assumption 1, the dual problem (12)
evaluates to zero. Thus, since any conflicted cycle contains
exactly one edge e € Epy with . < 0, we must have
> cieccc A& = |0c|, which implies 0. = 0. Furthermore, for
any cut §(U) of H it holds that

S

e€d(U)
ST D
ees(U)NE+ ec§(U)NE—
- > (- X) X (6 X)
e€d(U)NE+ C:ecC e€d(U)NE— C:eeC
=2 0t D - DX
e€s(U) e€s(U)NE™ e€s(UNET
C:eeC C:eeC
<y o
e€d(U)

The last inequality holds true, because every cycle with
precisely one negative edge e, where e € 6(U) N E~, also
contains some positive edge f € 6(U) N E™T, as it crosses
5(U) at least twice. This concludes the proof. O

B. Running times

In this section we provide additional information on run-
ning times for our experiments. We focus here on the time it
takes to evaluate our criteria and on the speedup of optimiza-
tion algorithms when applied to reduced instances instead of
original instances.

However, note that the running times of our methods
strongly depend on their practical implementation, both on
the conceptual level (which persistency criteria are checked)
and the technical level (how the algorithms are implemented).
Both aspects are highly nontrivial and there is ample poten-
tial for further improvement in terms of speed.

In Table 4 we report the average running times of our
methods for the experimental results from Table 2 and 3 in
the main paper.

Table 4. Average running times for our experimental results in
Table 2 (left side) and Table 3 (right side).

Data set Time Data set Time
Image Seg. 0.2s Ising Chain 0.0s
Knott-3D-150 0.2s 2D Torus 0.1s
Knott-3D-300 3.5s 3D Torus 0.2s
Knott-3D-450 18.7s Deconv. 0.3s
Knott-3D-550 62.8s Super Res. 0.0s
Modularity Clust. 0.1s Texture Rest. 754.2s
CREMI-small 21.2s
CREMI-large 4h
Fruit-Fly Level 1-4 18h
Fruit-Fly Global 6%

B.1. Overhead and speedup

In this section we compare the running time effort of the
different persistency criteria (Table 5) and the running times
for optimization algorithms applied to original or reduced
instances (Table 6). To this end, we restrict ourselves to
medium size instances that can be solved by exact methods
but exhibit nontrivial running times. The optimization algo-
rithms we consider include the combination of greedy edge
contraction (GAEC) and local search (KLj) [23] as well as
an integer linear program solved by branch-and-cut (ILP).

We can see in Table 5 that the overhead of checking edge
and triangle subgraphs is minor while the general subgraph
criteria require substantially more time.

We can see in Table 6 that both the heuristic solver and
the exact solver benefit from the size reduction achieved by
our methods. The speedup of the local search algorithm is
less than the overhead by our method, which is expected as
our method requires primal/dual heuristics and optimization
algorithms as subroutines. However, the results from local
search on the original instances come without any partial
optimality guarantees. The speedup of the exact solver is
substantial, which promotes our method as a preprocessing
step in an exact optimization pipeline.

C. Improved multicut subgraph criterion

In this section we describe a technical improvement of the
MULTICUT subgraph criterion presented in Theorem 2. Here,

Table 5. The table compares the average running time effort of
incorporating progressively more expensive persistency criteria.
The criteria are listed analogously to Figure 4.

Time [s]
Dataset [29] Edge A Greedy ICP
Knott-3D-450 0.3 0.7 1.6 125 18.7
CREMI-small 0.3 05 14 39 212

Table 6. The table compares the average running times of optimiza-
tion methods on original instances and reduced instances. For the
reduction all the presented criteria have been applied.

Time [s] original Time [s] reduced

Dataset GAEC+KL ILP GAEC+KL ILP
Knott-3D-450 57 9955 35 2520
CREMI-small 1.5 4974 0.5 208.9

improvement means relaxing the inequality (9) such that it
applies more often (without compromising the persistency
result).

To this end, we need to introduce some more notation.
For any set of vertices U C V, let

U ={veV|3Juw € Ewithu e U}

denote the boundary of U in V. The boundary of U consists
of those vertices in V' that have a neighbor in U but are not
in U themselves. For any set U C V, its closure U is defined
as the union of U with its boundary, i.e.

U=UUoU.

Further, for any connected subgraph H = (V, Ey), we
define its positive closure as the subgraph

H=(Vyg,Ey U(Vy)NE)),

which additionally includes all positive edges between Vi
and its boundary.

Below we state a more refined version of Theorem 2. The
difference in Theorem 4 is that the inner cut is w.r.t. the
subgraph H instead of H.

Theorem 4 (Multicut Subgraph Criterion). Let H =
(Va, Ex) be a connected subgraph of G and suppose
wv € By. If

in (6,y) =0
join, (0,9)

and for all U C Vg withu € U and v ¢ U it holds that

)R- N N (V)

e€s(U,Vu\U)NEgz e€s(Vy)NE+

then x7,,, = 0 in some optimal solution =* of (Pmc).

Proof. The proof is largely analogous to the proof of The-
orem 2. Suppose v € MC with z|p,, =y € MC(H) and
Yuv = 1. Apparently, there exists a multicut M of H which
extends y such that T\, = 1. Similarly to before, there
exists some U C Vy withuw € U and v ¢ U such that
§(U,Vg\U)N Ez C M and

S bewet Y e > > ..

e€s(Vy)NE+ ecEy e€6(U,Vy\U)NEg7
(18)

Eventually, using (17) and (18), we show that the mapping
pY = (Pvy © Ps(vy,)) still improves x, as follows:

(0,p%(x)) — (0,)

= Z 0. (1 —) + Z 0.(1 — x.)

e€s(Vg)NE+ ee§(Vg)NE—

-3 b

ecEy

S SIS SN
e€d(Vy)NE+ ecd(Vg)NE+ e€Eny

<) b= > b

ecd(Vy)NE+ e€d(Vg)NE+

=0. [

The inequality (17) is less restrictive than (9) in Theo-
rem 2, because the left-hand side is potentially larger. In-
deed, if two neighboring nodes u, v € Vi are connected by
positive edges to some vertex w € OV in the boundary (i.e.
they form a positive triangle), then the extension of any cut
that separates u from v has to cut another edge of the trian-
gle. Thus, the weight of this edge can be subtracted from the
right-hand side of the inequality (9) or, equivalently, added
to the left-hand side, which is what (17) achieves.

For the special case of a single edge subgraph H =
({u, v}, {uv}) the refined condition is explicitly stated as

Our > Z 0, — Z min{ @y, Oy }-

e€d(uv)NE+ w#u,v|uw,vweE+

Note that the refined condition (17) can be checked by
computing minimum u-v-cuts in the graph H instead of H.
Therefore, a minor modification of the algorithm proposed
in the main paper suffices.

