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Abstract

This supplementary document contains more details not
shown in the main paper. Sec. 1 first describes more details
of the architecture of each subnetwork in DMENet. In Sec. 2,
we report further results evaluated on the sharpness calibra-
tion network. Sec. 3 shows the quantitative results of our
ablation study that compares different combinations of sub-
networks of DMENet. Finally, we present more qualitative
results on RTF dataset in Sec. 4.

1. Detailed Network Architecture
Our network consists of four subnetworks: blur esti-

mation network B, domain adaptation network D, content
preservation network C, and sharpness calibration network
S. We here present more details of the structures of the
subnetworks.

Blur Estimation Network The main structure of our net-
work B follows U-net architecture [4] with minor changes.
The network consists of encoder, decoder, auxiliary module,
and residual convolution modules. The encoder directly im-
ports the structure of VGG19 [6]. The decoder adopts the
decoder of U-net, in which the up-sampled features are skip-
connected with the down-sampled features of the encoder.
In the auxiliary module, we attach two consecutive convo-
lutional layers after each up-sampling layer in the decoder.
Finally, we attach seven residual blocks of convolutional
layers after the decoder, and generate the final result. The
details of the network design is shown in Table 1.

Domain Adaptation Network The network D consists of
four convolutional layers, followed by the batch normaliza-
tion layer (see Table 2 for details).

Content Preservation Network Our network C uses the
pretrained VGG19 [6].

Sharpness Calibration Network The network S consists
of four 1 × 1 convolution layers. The first three layers are

Figure 1: Defocus maps generated with different convolu-
tional filter sizes in the sharpness calibration network S: 3×3
filter (middle) and 1× 1 filter (right), given an input image
(left). The larger filter leads to a smudged defocus map.

followed by the batch normalization layer. See Table 3 for
the detailed architecture.

2. Evaluation on Sharpness Calibration

This section reports further evaluations performed regard-
ing a larger kernel size and binarization for the sharpness
calibration network S.

Larger Kernel The filter size of the convolutional layers
is 1×1 in the network S. We can use a larger kernel size,
but it might degrade the accuracy of a generated defocus
map. As mentioned in the main paper, with a larger kernel,
the receptive field of S becomes larger, and then gradients
passed from S to the blur estimation network B would be
propagated to larger regions than the receptive fields of B.
Fig. 1 shows an example of a degraded defocus map.

Binarization One concern may arise is that the network
S may binarize a defocus map generated by the network B.
The sharpness calibration loss (LS) would try to binarize the
result if it is directly applied to network B. However, we
attach network S to B, making the gradients of loss LS to
be flexibly applied to B. For example, assume that B has
estimated a perfect defocus map. If LS is directly applied to
B, LS would be non-zero and influence B towards a binary
map. On the other hand, in our case, LS is applied to S that
is attached to B, and LS will be non-zero only when S does
not produce a relevant binary blur map. Consequently, S
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layer type(#) size stride out act. repeat
Encoder (VGG19)

Conv1 3× 3 (1, 1) 64 relu ×2
maxPool 2× 2 (2, 2) - -
Conv2 3× 3 (1, 1) 128 relu ×2

maxPool 2× 2 (2, 2) - -
Conv3 3× 3 (1, 1) 256 relu ×4

maxPool 2× 2 (2, 2) - -
Conv4 3× 3 (1, 1) 512 relu ×4

maxPool 2× 2 (2, 2) - -
Conv5 3× 3 (1, 1) 512 relu ×4

Decoder
concat upsample(Conv5), Conv4
Conv 3× 3 (1, 1) 256 - ×3

BatchNorm1 - - - lrelu
concat upsample(BatchNorm1), Conv3
Conv 3× 3 (1, 1) 128 - ×3

BatchNorm2 - - - lrelu
concat upsample(BatchNorm2), Conv2
Conv 3× 3 (1, 1) 64 - ×3

BatchNorm3 - - - lrelu
concat upsample(BatchNorm3), Conv1
Conv 3× 3 (1, 1) 64 - ×1

BatchNorm4 - - - lrelu
Residual Blocks×7

skip previous layer
Conv 3× 3 (1, 1) 64 - ×2

BatchNorm - - - lrelu
add BatchNorm, skip

Auxiliary Modules
input Conv5
Conv 3× 3 (1, 1) 256 - ×1

BatchNorm - - - lrelu
Conv 3× 3 (1, 1) 1 -
input BatchNorm1
Conv 3× 3 (1, 1) 128 - ×1

BatchNorm - - - lrelu
Conv 3× 3 (1, 1) 1 -
input BatchNorm2
Conv 3× 3 (1, 1) 64 - ×1

BatchNorm - - - lrelu
Conv 3× 3 (1, 1) 1 -
input BatchNorm3
Conv 3× 3 (1, 1) 32 - ×1

BatchNorm - - - lrelu
Conv 3× 3 (1, 1) 1 -
input BatchNorm4
Conv 3× 3 (1, 1) 32 - ×1

BatchNorm - - - lrelu
Conv 3× 3 (1, 1) 1 -

Table 1: Architecture of blur estimation network B. The ratio
of the upsample layers in decoder is 2×. We set α = 0.2 for
lrelu (leaky relu) activation layer.

type size stride out act.
Conv 4× 4 (2, 2) 64 -

BatchNorm - - - relu
Conv 4× 4 (2, 2) 128 -

BatchNorm - - - relu
Conv 4× 4 (2, 2) 256 -

BatchNorm - - - relu
Conv 4× 4 (2, 2) 512 -

BatchNorm - - - relu
Conv 4× 4 (2, 2) 1 -

Table 2: Architecture of domain adaptation network D.

type size stride out act. repeat
Conv 1× 1 (1, 1) 64 - ×3

BatchNorm - - - relu
Conv 1× 1 (1, 1) 32 - ×3

BatchNorm - - - relu
Conv 1× 1 (1, 1) 16 - ×3

BatchNorm - - - relu
Conv 1× 1 (1, 1) 1 - ×1

Table 3: Architecture of sharpness calibration network S.

datasets DMENetBDC DMENetBDCS
SYNDOF 0.015/0.093 0.011/0.072

RTF 0.019/0.159 0.012/0.088

Table 4: Errors of the defocus maps generated with and with-
out the sharpness calibration network on the SYNDOF and
RTF datasets. Mean Squared Error (MSE) / Mean Absolute
Error (MAE) are used as error metrics.

gives a room to B for being trained to correctly estimate a
defocus map without being directly governed by LS .

To quantitatively show the effect of sharpness calibration
on the accuracy, we measured the errors of the defocus maps
estimated with and without the network S, using the ground
truth defocus maps from the test sets of SYNDOF and RTF
datasets. In Table 4, the errors for both synthetic and real im-
ages are reduced with sharpness calibration, which indirectly
shows our framework avoids binarization degradation.

3. Quantitative Results of Ablation Study

Table 5 demonstrates the effects of incremental addition
of the subnetworks to estimate defocus maps from synthetic
(SYNDOF) and real (RTF and CUHK) datasets. For SYN-
DOF dataset, the accuracies of the results generated with the
combinations vary but only in subtle degrees, as expected.
However, for real images, we can easily observe positive
effects of the attachments of the subnetworks, which reduces
errors or increases accuracies.



SYNDOF RTF CUHK
MSE / MAE MSE / MAE acc / mAP

DMENetB 0.010 / 0.060 0.021 / 0.113 0.732 / 0.826
DMENetBD 0.008 / 0.058 0.015 / 0.095 0.797 / 0.892
DMENetBC 0.010 / 0.067 0.021 / 0.117 0.703 / 0.812
DMENetBDC 0.015 / 0.093 0.019 / 0.159 0.805 / 0.891
DMENetw/oLaux

BDCS 0.018 / 0.094 0.013 / 0.089 0.880 / 0.932
DMENetBDCS 0.011 / 0.072 0.012 / 0.088 0.873 / 0.935

Table 5: Results with different combinations of subnetworks
of DMENet in the ablation study. For SYNDOF and RTF
dataset, we computed average errors in MSE/MAE. For
CUHK dataset, we measured accuracy (acc) and mean Aver-
age Precision (mAP).

This confirms that the networks D and S well transfer the
real domain features without harming features of synthetic
images and assist B to estimate blur amounts from features
of both domains.

4. Detailed Evaluation on RTF Dataset
We conducted more experiments to evaluate our network

against other methods on the RTF dataset (see Table 6).
We measured individual MAE for each image, as well as
their average MAE/MSE. We also measured the errors on
noisy versions of the images, to which we applied Gaussian
noise with standard deviations of σ = 1.0 and σ = 1.6, as
suggested in [1].
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Image # [7] [5] [1] [3] [2] Ours
01 0.229 0.146 0.098 0.106 0.119 0.070
02 0.358 0.303 0.129 0.135 0.172 0.081
03 0.233 0.150 0.106 0.133 0.186 0.091
04 0.216 0.226 0.080 0.099 0.114 0.075
05 0.211 0.157 0.081 0.138 0.160 0.118
06 0.210 0.155 0.073 0.089 0.181 0.111
07 0.230 0.158 0.105 0.122 0.185 0.072
08 0.490 0.253 0.083 0.096 0.364 0.088
09 0.404 0.273 0.069 0.132 0.224 0.051
10 0.268 0.189 0.131 0.180 0.128 0.101
11 0.400 0.187 0.112 0.086 0.190 0.083
12 0.432 0.325 0.077 0.091 0.217 0.083
13 0.258 0.275 0.084 0.134 0.147 0.056
14 0.343 0.303 0.266 0.133 0.264 0.166
15 0.535 0.248 0.076 0.233 0.328 0.170
16 0.289 0.249 0.108 0.124 0.221 0.107
17 0.485 0.365 0.134 0.156 0.289 0.058
18 0.324 0.135 0.105 0.111 0.181 0.104
19 0.319 0.416 0.135 0.130 0.226 0.074
20 0.329 0.141 0.112 0.094 0.158 0.055
21 0.296 0.245 0.094 0.106 0.116 0.061
22 0.437 0.402 0.084 0.219 0.202 0.072

Avg. MSE 0.153 0.082 0.033 0.024 0.064 0.012
Avg. MAE 0.332 0.241 0.106 0.129 0.199 0.088

Avg. Time(s) 9.42 5.30 114 12.83 1.44 0.57
Average results for added artificial noise (sσ = 1.0)

Avg. MSE 0.162 0.068 0.034 0.031 0.067 0.020
Avg. MAE 0.341 0.211 0.113 0.141 0.203 0.118
Average results for added artificial noise (sσ = 1.6)

Avg. MSE 0.197 0.057 0.041 0.038 0.073 0.046
Avg. MAE 0.370 0.184 0.129 0.152 0.211 0.175

Table 6: Comparison of Mean Absolute Errors (MAEs) of
our DMENet against other competitive approaches for RTF
dataset. We also show the average MAEs/MSEs for noisy
versions of the dataset.


