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This supplementary material contains two appendixes.
Appendix A collects all the proofs omitted from the main
text and Appendix B provides extra empirical results.

A. Proof
This appendix collects all the proofs omitted from the

main text.

A.1. Preliminary

This subsection gives the background knowledges nec-
essary to the development of the theoretical analysis.

A tuned FSTRN induces a hypothesis function that maps
from low-resolution videos to high-resolution videos. For
the brevity, we denote the hypothesis function as

Fθ : RnLR → RnHR , (A.1)
ILR 7→ IHR, (A.2)

where θ is the tuned parameter, and nLR and nLR are re-
spectively the dimensions of the low-resolution space and
the high-resolution space. Suppose all the hypothesis func-
tions Fθ computed by FSTRN constitute a hypothesis space
H. To measure the performance of the hypothesis function,
we define an object function in the main text as eq. 3.9. The
corresponding loss function is defined as follows:

l (ISR, IHR; θ) =ρ (IHR − ISR)

=

√
(IHR − ISR)

2
+ ε2, (A.3)

where IHR and ILR are respectively the output (high-
resolution image/video) and input (low-resolution im-
age/video), and ρ (x) =

√
x2 + ε2 is Charbonnier penalty
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function. Based on the loss function l(ISR, IHR, Fθ), the
expected risk, in term of the hypothesis function Fθ, is de-
fined as follows:

R(Fθ) = EISR,IHR
l(ISR, IHR, Fθ). (A.4)

Similarly, the empirical risk is defined as

R̂(Fθ) = L(Fθ) =
1

N

N∑
n=1

l(InSR, I
n
HR, Fθ), (A.5)

where InSR and InHR denote the n-th instance in the training
set, and N is the sample size, and we redefine the empirical
risk as R̂ in accordance with the convention. Finally, the
generalization error of hypothesis function F (θ) is defined
as the difference between the expected risk R(Fθ) and the
corresponding empirical risk R̂(Fθ).

As the principle of Occam’s razor says, the generaliza-
tion capability of an algorithm is dependent with the com-
plexity of its corresponding hypothesis space (hypothesis
complexity): a complex algorithms tend to have a poor gen-
eralization ability. In learning theory, three classic mea-
surements of hypothesis complexity are respectively VC-
dimension, Rademacher complexity, and covering number
(see, respectively, [2], [11], and [5]). An classic result in
learning theory expresses the negative correlation between
the generalization error of an algorithm and the correspond-
ing Rademacher complexity R̂(H) as the following lemma.

Lemma 1 (cf. [10], Theorem 3.1). For any δ > 0, with
probability at least 1 − δ, the following inequality hold for
all Fθ ∈ H:

R(Fθ) ≤ R̂(Fθ) + 2R̂(l ◦ H) + 3

√
log 2

δ

2N
, (A.6)



where l ◦ H is defined as

l ◦ H , {l ◦ F : F ∈ H}. (A.7)

Computing the empirical Rademacher complexity of
neural network could be extremely difficult and thus still
remains an open problem. Fortunately, the empirical
Rademacher complexity can be upper bounded by the corre-
sponding ε-covering numberN(H, ε, ‖·‖2) as the following
lemma states.

Lemma 2 (cf. [1], Lemma A.5). Suppose 0 ∈ H and all
conditions in Lemma 1 hold. Then

R̂(H)

≤ inf
α>0

(
4α√
n

+
12

n

∫ √n
α

√
logN (l ◦ H, ε, ‖ · ‖2)dε

)
.

(A.8)

Some recent works study the hypothesis complexity of
deep neural networks and provide upper bounds of the
corresponding hypothesis spaces. [1] gives a spectrally-
normalised covering bound and a generalization bound for
all chain-like neural networks. [6] focuses on the deep neu-
ral networks with shortcut connections and gives a covering
bound and a corresponding generalization bound. Specifi-
cally, for a deep neural network with residual connections,
suppose the “stem” is obtained by discarding all residual
connections. Apparently, it is a chain-like neural network
and can be expressed by the following formula:

S = (A1, σ1, A2, σ2, . . . , AL, σL), (A.9)

where Ai, i = 1, . . . , L are weight matrices and σi are non-
linearities. Meanwhile, we denote all residual connections
as Vj , j ∈ J , where J is the index set. Suppose the output
of the i-th layer (constituted by the weight matrixAi and the
nonlinearity σi) is Fi, and all possible outputs Fi constitute
a hypothesis spaceHSi . Similarly, all outputs of the residual
connection Vj constitute a hypothesis spaceHVj . In this pa-
per, our theoretical analysis is developed based on the two
works stated above. Specifically, the covering bounds given
by [6, 1] are respectively as follows.

Lemma 3 (see [6], Theorem 1). Suppose the εSi -covering
number ofHSi isN S

i and the εVj -covering number ofHVj is
N V
i . Then there exists an ε in terms of all εSi and εVj , such

that the following inequality holds:

N (H) ≤
L∏
i=1

N S
i

∏
j∈J
N j
V . (A.10)

Lemma 4 (cf. [1], Lemma A.7). Suppose there are
L weight matrices in a chain-like neural network. Let

(ε1, . . . , εL) be given. Suppose the L weight matrices
(A1, . . . , AL) lies in B1× . . .×BL, where Bi is a ball cen-
tered at 0 with the radius of si, i.e., Bi = {Ai : ‖Ai‖ ≤ si}.
Furthermore, suppose the input data matrix X is restricted
in a ball centred at 0 with the radius of B, i.e., ‖X‖ ≤ B.
Suppose F is a hypothesis function computed by the neural
network. If we define:

H = {F (X) : Ai ∈ Bi, Au,v,st ∈ Bu,v,st }, (A.11)

where i = 1, . . . , L, (u, v, s) ∈ IV , and t ∈
{1, . . . , Lu,v,s}. Let ε =

∑L
j=1 εjρj

∏L
l=j+1 ρlsl. Then

we have the following inequality:

N (H) ≤
L∏
i=1

sup
Ai−1∈Bi−1

Ni, (A.12)

where Ai−1 = (A1, . . . , Ai−1), Bi−1 = B1 × . . . × Bi−1,
and

Ni = N
({
AiFAi−1

(X) : Ai ∈ Bi
}
εi, ‖ · ‖

)
. (A.13)

A.2. Covering bound of FSTRN

This subsection gives a detailed proof for the covering
bound of FSTRN. We first recall a result by Bartlett et al.
[1].

Lemma 5 (cf. [1], Lemma 3.2). Let conjugate exponents
(p, q) and (r, s) be given with p ≤ 2, as well as positive re-
als (a, b, ε) and positive integer m. Let matrix X ∈ Rn×d
be given with ‖X‖p ≤ b. Let HA denote the family of ma-
trices obtained by evaluating X with all choices of matrix
A:

HA ,
{
XA|A ∈ Rd×m, ‖A‖q,s ≤ a

}
. (A.14)

Then

logN (HA, ε, ‖ · ‖2) ≤
⌈
a2b2m2/r

ε2

⌉
log(2dm). (A.15)

This covering bound constrains the hypothesis complex-
ity contributed by a single weight matrix.

As Figure 3 shows, suppose all hypothesis functions
FL0 , F

L
1 , . . . , F

L
D , F

L
Up, F

L
SR respectively constitute a series

of hypothesis spaces HL0 ,HL1 , . . . ,HLD,HLUp,HLSR.
For the brevity, we rewrite those notations re-
spectively as FL0 , F

L
1 , . . . , F

L
D , F

L
D+1, F

L
D+2, and

HL0 ,HL1 , . . . ,HLD,HLD+1,HLD+2. Also, sup-
pose the covering number respectively with
the radiuses εL0 , ε

L
1 , . . . , ε

L
D, ε

L
D+1, ε

L
D+2 are

N (HL0 ),N (HL1 ), . . . ,N (HLD),N (HLD+1),N (HLD+2).

Proof of Theorem 1. Employing Lemma 3, we can straight
obtain the following inequality.

logN (H) ≤
D∑
d=0

logN (HLd ). (A.16)



Applying eq. (A.15) of Lemma 5, we can obtain the follow-
ing result. We first calculate the covering bound of FRBs.
Denote the PReLU in the d-th FRB as σd and denote the
weight matrices corresponding to the 2 convolutional layers
respectively as Ad1 and Ad2. Then, for d = 1, . . . , D,

logN (Hd+1)

≤ (bd+1
1 )2‖σd(Fd(XT )T )‖22

(εd+1
1 )2

log(2W 2)

+
(bd+1

2 )2‖Ad+1
1 σd+1(Fd(X

T )T )‖22
(εd+1

2 )2
log(2W 2).

(A.17)

Apparently,

‖σd+1(Fd(X
T )T )‖22 ≤ (ρd+1)2‖Fd(XT )T ‖22, (A.18)

and

‖Ad+1
1 σd+1(Fd(X

T )T )‖22
≤(sd+1

1 )2‖σd+1(Fd(X
T )T )‖22

≤(sd+1
1 ρd+1)2‖Fd(XT )T ‖22. (A.19)

Also, motivated by the proof of Lemma 4.3 of [6], we can
obtain the following equations.

εd+1
1 = εLd ρ

d+1, (A.20)

εd+1
2 = εd+1

1 (1 + sd+1
1 ) = εLd ρ

d+1(1 + sd+1
1 ), (A.21)

and

εLd+1 = εd+1
2 (1 + sd+1

2 )

= εLd ρ
d+1(1 + sd+1

1 )(1 + sd+1
2 ). (A.22)

Applying eqs. (A.18), (A.19), (A.20), (A.21), (A.22) to eq.
(A.17), we can obtain a covering bound for FRBs as fol-
lows.

logN (Hd+1)

≤‖Fd(X)‖22
(εLd+1)2

log
(
2W 2

)
(ρd+1)2[

(bd+1
1 )2(1 + sd+1

1 )2 + (bd+1
2 )2(sd+1

1 )2
]
. (A.23)

By applying eq. (A.19) and the induction method, we
can straight get the following inequality:

logN (Hd+1)

≤
d∏
i=1

[(
ρisi1s

i
2

)2
+ 1
] [(

bd1
)2 (

1 + sd2
)2

+
(
bd2s

d
1

)2]
(
‖X‖2s1ρd

εd

)2

. (A.24)

Similarly, we can also get the following inequalities.

logN (H1) ≤ b21‖X‖22ᾱ
ε2

log
(
2W 2

)
, (A.25)

logN (HD+1) ≤

1 +

D∑
i=1

i∏
j=1

[
(ρj)2(sj1s

j
2)2 + 1

]
‖X‖22ρ21

b22
ε22

log
(
2W 2

) b22
ε22
, (A.26)

logN (HD+2) ≤

1 +

D∑
i=1

i∏
j=1

[
(ρj)2(sj1s

j
2)2 + 1

]
‖X‖22ρ21

b22
ε22

log
(
2W 2

)
s22
b23
ε23

+
b21‖X‖22
ε2

log
(
2W 2

)
. (A.27)

Applying eqs. (A.24, A.25, A.26, and A.27) to eq. (A.16),
we eventually prove the theorem.

A.3. Generalization Bound for FSTRN

The Theorem 2 is the same as Theorem 4.4 of [6]. For
the completeness of this paper, we restate the proof here.

Proof of Theorem 2. We prove this theorem in 2 steps:
(1) First apply Lemma 2 to get an upper bound on the
Rademacher complexity; and then (2) Apply the result of
(1) to Lemma 1 in order to get a generalization bound.

(1) Upper bound on the Rademacher complexity.
Applying eq. (A.8) of Lemma 2, we can get the follow-

ing inequality:

R(Hλ|D) ≤ inf
α>0

(
4α√
n

+
12

n

∫ √n
α

√
logN (H)dε

)

≤ inf
α>0

(
4α√
n

+
12

n

∫ √n
α

√
R

ε
dε

)

≤ inf
α>0

(
4α√
n

+
12

n

√
R log

√
n

α

)
. (A.28)

Apparently, the infinimum is reached uniquely at α =

3
√

R
n . Here, we use a choice α = 1

n , and get the following
inequality:

R(Hλ|D) ≤ 4

n
3
2

+
18

n

√
R log n. (A.29)

(2) Upper bound on the generalization error.



Combining with Lemma 1, we get the following inequal-
ity:

Pr{arg max
i
F (x)i 6= y}

≤R̂λ(F ) +
8

n
3
2

+
36

n

√
R log n+ 3

√
log(1/δ)

2n
. (A.30)

The proof is completed.

B. Empirical Results
This appendix collects all empirical results omitted from

the main text. Our algorithm outperforms the state-of-the-
art methods in both qualitative and quantitative aspects.

B.1. Quantitatively Results

The quantitative results of all the methods on Vid4 [9]
are summarized in Table 1, where the evaluation measures
are the PSNR and SSIM indices. As demonstrated in Table
1, our algorithm has excellent robustness in different sce-
narios and outperforms all other methods.

B.2. Qualitatitve Results

We also qualitatively compare our algorithm with sev-
eral existing algorithms, Bicubic, SRCNN[4], SRGAN[8],
RDN[12], BRCN[7], VESPCN[3], and our FSTRN. The
comparison experiments are all with scale factor 4. The
qualitative results also illustrate the excellent performance
of our algorithm.

References
[1] Peter L Bartlett, Dylan J Foster, and Matus J Telgarsky.

Spectrally-normalized margin bounds for neural networks.
In NIPS, pages 6240–6249, 2017.

[2] Peter L Bartlett and Shahar Mendelson. Rademacher and
gaussian complexities: Risk bounds and structural results.
JMLR, 3(Nov):463–482, 2002.

[3] Jose Caballero, Christian Ledig, Andrew P. Aitken, Alejan-
dro Acosta, Johannes Totz, Zehan Wang, and Wenzhe Shi.
Real-time video super-resolution with spatio-temporal net-
works and motion compensation. In CVPR, pages 2848–
2857, 2017.

[4] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou
Tang. Learning a deep convolutional network for image
super-resolution. In David J. Fleet, Tomás Pajdla, Bernt
Schiele, and Tinne Tuytelaars, editors, ECCV, volume 8692
of Lecture Notes in Computer Science, pages 184–199.
Springer, 2014.

[5] Richard M Dudley. The sizes of compact subsets of hilbert
space and continuity of gaussian processes. In Selected
Works of RM Dudley, pages 125–165. Springer, 2010.

[6] Fengxiang He, Tongliang Liu, and Dacheng Tao. Why resnet
works? residuals generalize. CoRR, abs/1904.01367, 2019.

[7] Yan Huang, Wei Wang, and Liang Wang. Bidirectional
recurrent convolutional networks for multi-frame super-
resolution. In Corinna Cortes, Neil D. Lawrence, Daniel D.
Lee, Masashi Sugiyama, and Roman Garnett, editors, NIPS,
pages 235–243, 2015.

[8] Christian Ledig, Lucas Theis, Ferenc Huszar, Jose Caballero,
Andrew Cunningham, Alejandro Acosta, Andrew P. Aitken,
Alykhan Tejani, Johannes Totz, Zehan Wang, and Wenzhe
Shi. Photo-realistic single image super-resolution using a
generative adversarial network. In CVPR, pages 105–114,
2017.

[9] Ce Liu and Deqing Sun. A bayesian approach to adaptive
video super resolution. In CVPR, pages 209–216. IEEE
Computer Society, 2011.

[10] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Tal-
walkar. Foundations of machine learning. MIT press, 2012.

[11] Vladimir N Vapnik and Alexey J Chervonenkis. Theory of
pattern recognition. Nauka, 1974.

[12] Yulun Zhang, Yapeng Tian, Yu Kong, Bineng Zhong, and
Yun Fu. Residual dense network for image super-resolution.
In CVPR, 2018.



Methods City Calendar Walk Foliage Average
PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM

Bicubic 24.82 / 0.58 19.98 / 0.55 25.33 / 0.78 22.91 / 0.54 23.25 / 0.62
SRCNN[4] 25.46 / 0.65 21.08 / 0.65 27.16 / 0.84 24.05 / 0.66 24.47 / 0.71
SRGAN[8] 25.30 / 0.64 21.04 / 0.64 26.55 / 0.81 23.69 / 0.62 24.16 / 0.68
RDN[12] 25.59 / 0.66 20.99 / 0.63 27.19 / 0.83 24.05 / 0.66 24.49 / 0.70
BRCN[7] 25.46 / 0.64 21.10 / 0.64 27.06 / 0.84 24.03 / 0.65 24.44 / 0.70

VESPCN[3] 25.55 / 0.66 21.07 / 0.65 27.17 / 0.84 24.08 / 0.67 24.50 / 0.71
FSTRN(ours) 25.76 / 0.68 21.36 / 0.68 27.57 / 0.85 24.21 / 0.67 24.76 / 0.72

Table 1: Comparison of the PSNR and SSIM results on vid4 [9] sequences by Bicubic, SRCNN[4], SRGAN[8], RDN[12],
BRCN[7], VESPCN[3], and our FSTRN with scale factor 4.

HR / PSNR / SSIM Bicubic / 19.99 / 0.53 SRCNN / 21.08 / 0.61 SRGAN / 21.07 / 0.61

RDN / 21.04 / 0.60 BRCN / 21.15 / 0.62 VESPCN / 21.06 / 0.62 FSTRN / 21.40 / 0.65

Figure 1: Visual comparisons of the super-resolution results for video Calendar on ×4 upscaling factor.

HR / PSNR / SSIM Bicubic / 25.25 / 0.75 SRCNN / 27.06 / 0.81 SRGAN / 26.47 / 0.79

RDN / 27.10 / 0.80 BRCN / 26.97 / 0.81 VESPCN / 26.98 / 0.81 FSTRN / 27.39 / 0.82

Figure 2: Visual comparisons of the super-resolution results for video Walk on ×4 upscaling factor.



HR / PSNR / SSIM Bicubic / 25.57 / 0.73 SRCNN / 27.44 / 0.78 SRGAN / 27.13 / 0.78

RDN / 27.56 / 0.78 BRCN / 27.23 / 0.78 VESPCN / 27.88 / 0.80 FSTRN / 28.22 / 0.82

Figure 3: Visual comparisons of the super-resolution results for video Turbine on ×4 upscaling factor.

HR / PSNR / SSIM Bicubic / 33.68 / 0.93 SRCNN / 34.36 / 0.93 SRGAN / 33.76 / 0.93

RDN / 34.68 / 0.93 BRCN / 34.25 / 0.93 VESPCN / 34.58 / 0.94 FSTRN / 35.08 / 0.94

Figure 4: Visual comparisons of the super-resolution results for video Fan on ×4 upscaling factor.


