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Abstract

The following items are contained in the supplementary
material:

1. Discussions on the feedback block.
2. More insights on the feedback mechanism.
3. Quantitative results using DIV2K training images.
4. Running time comparison.
5. More qualitative results.

1. Study of Feedback Block
More effective basic block could generate finer high-

level representations and then benefits our feedback pro-
cess. Thus, we explore the design of the basic block in this
section. We still use SRFBN-L (T=4, G=6), which has a
small base number of fiters (m=32) for analysis.

Ablation study mainly focuses on two components of
our feedback block (FB): (1) up- and down-sampling lay-
ers (UDSL), (2) dense skip connecitons (DSC). To analysis
the effect of UDSL in our proposed FB, we replace the up-
and down-sampling layers with 3 × 3 sized convolutional
layers (with one padding and one stridding). In Tab. 1,
when UDSL is replaced with 3× 3 sized convolutional lay-
ers in the FB, the PSNR value dramatically decreases. This
indicates that up- and down-sampling operations carrying
large kernel size can expliot abundant contextual informa-
tion and are effective for image super-resolution (SR). Af-
ter adding DSC to the FB, the reconstruction performance
can be further improved, because the information efficiently
flows through DSC across hierarchy layers and even across
time.

Different combinations of UDSL and DSC
UDSL 7 4 7 4

DSC 7 7 4 4

PSNR 31.41 32.05 31.62 32.11

Table 1. The investigation of up- and down-sampling layers
(UDSL), and dense skip connection (DSC) with scale factor ×4
on Set5.

Other basic blocks are considered in this experiment

t = 1 t = 2 t = 3 t = 4

Figure 1. Average feature maps of refined low-level features from
different iterations in the propose SRFBN (zoom for a better view).
All average feature maps use the same colormap for better visual-
ization.

in comparison with our FB. We choose two superior basic
blocks (i.e. projection units[2] and RDB[7]), which were
designed for image SR task recently, and ConvLSTM from
[5] for comparison. To keep consistency, the number of con-
volutional layers1 and filters in each basic block is set to 12
and 32, respectively. In Tab. 2, we first see that all SR cus-
tom basic blocks outperform ConvLSTM by a large margin.
The gate mechanisms in ConvLSTM influence the distribu-
tion and intensity of original images and thus are difficult to
meet high fidelity needs in image SR tasks. Besides, high-
level information is directly added to low-level information
in ConvLSTM, causing the loss of enough contextual in-
formation for the next iteration. Noticeably, our proposed
FB obtains the best quantitative results in comparison with
other basic blocks. This further demonstrates the powerful
representation ability of our proposed FB.

2. Additional Insights on Feedback Mechanism
For better understanding the feedback mechanism in the

proposed network, we visualize the average feature map of
Lt
0 at each iteration t in Fig. 1. Lt

0 actually represents
the low-level representations refined by high-level features
F t−1
out from last iteration (see the main paper’s Eq. 5). The

initial state F 0
out is set to F 1

in, hence the first iteration in the
proposed network can’t receive the feedback information.
From Fig. 1, we observe that, except the first iteration (t=1),
these average feature maps show bright activations in the
contours and outline edges of the original image. It seems
that the feedback connection adds the high-level represen-
tations to the initial feature maps. This further indicates that

11× 1 sized convolutional layers are omitted.
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ConvLSTM Projection units RDB Ours
PSNR 31.26 32.07 32.01 32.11

Table 2. The investigation of other block design with scale factor ×4 on Set5.

Params. Set5 Set14 B100 Urban100 Manga109
MemNet-Pytorch 677K 31.75/0.889 28.31/0.775 27.37/0.729 25.54/0.766 29.65/0.897

D-DBPN [2] 10,426K 32.40/0.897 28.75/0.785 27.67/0.738 26.38/0.793 30.89/0.913
SRFBN-S (Ours) 483K 31.98/0.892 28.45/0.778 27.44/0.731 25.71/0.772 29.91/0.901
SRFBN (Ours) 3,631K 32.39/0.897 28.77/0.786 27.68/0.740 26.47/0.798 30.96/0.914

Table 3. Average PSNR/SSIM values for scaling factor ×4 using BI degradation model. The networks used for comparison are all trained
using DIV2K training images. The best performance is highlighted.
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Figure 2. The spectral densities of the average feature map at each
iteration t (zoom for a better view). From left to right of the verti-
cal axis, frequency is normalized and ranged from low to high for
better visualization.

initial low-level features, which lack enough contextual in-
formation, surely are corrected using high-level information
through the feedback mechanism in the proposed network.

To further conduct differences between feedforward and
feedback networks, we plot 1-D spectral densities of the av-
erage feature map at each iteration t in SRFBN-L (feed-
back) and SRFBN-L-FF (feedforward). As shown in Fig.5
of the main paper, each average feature map is the mean
of F t

out. To acquire 1-D spectral densities of the average
feature map at each iteration t, we get the 2-D spectrum
map through discrete Fourier transform, center the low-
frequency component of the spectrum map, and place con-
centric annular regions to compute the mean of spectral den-
sities for continuous frequency ranges. From Fig. 2, we can
conclude that the feedback network can estimate more mid-
frequency and high-frequency information than the feedfor-
ward network at early iterations. With the iteration t grows,
the feedforward network gradually recovers mid-frequency
and high-frequency components, while the feedback net-
work pays attention to refine the well-developed informa-
tion. For the feedback network, we also observe that, be-
cause of the help of the feedback mechanism (t >1), mid-
frequency and high-frequency information of the average
feature map at the second iteration (t=2) is more similiar to

the final representations (t=4) in contrast to the first itera-
tion (t=1).

3. Sanity Check

To purely investigate the effect of the network architec-
ture design, we compare the quantitative results obtained
from different networks using the same training dataset
(DIV2K training images[1]). The choices of networks for
comparison include D-DBPN (which is a state-of-the-art
network with moderate parameters) and MemNet[4] (which
is the leading network with recurrent structure). Because
MemNet only reveals the results trained using 291 images,
we re-train it using DIV2K on Pytorch framework. The re-
sults of D-DBPN are cited from their supplementary mate-
rials. Our SRFBN-S (T=4, G=3, m=32) and final SRFBN
(T=4, G=6, m=64) are provided for this comparison. In
Tab. 3, our SRFBN-S shows better quantitative results than
MemNet with 71% fewer parameters. Moreover, the fi-
nal SRFBN also gains competitive results in contrast to
D-DBPN especially on Urban100 and Manga109 datasets,
which mainly contain images with a large size. This com-
parison shows the effectiveness of the proposed SRFBN.

Model Running time (s) PSNR
MemNet-Pytorch 0.481 25.54

EDSR 1.218 26.64
D-DBPN 0.015 26.38

RDN 1.268 26.61
RCAN 1.130 26.82

SRFBN-S (Ours) 0.006 25.71
SRFBN (Ours) 0.011 26.60

Table 4. Average running time comparison on Urban100 with scale
factor 4 on an NVIDIA 1080Ti GPU.
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4. Running Time Comparison
We compare running time of our proposed SRFBN-S and

SRFBN with five state-of-the-art networks: MemNet[4],
EDSR[3], D-DBPN[2], RDN[7] and RCAN[6] on Ur-
ban100 with scale factor ×4. Because the large memory
consumption in Caffe, we re-implement MemNet on Py-
torch for fair comparison. The running time of all net-
works is evaluated on the same machine with 4.2GHz In-
tel i7 CPU (16G RAM) and an NVIDIA 1080Ti GPU us-
ing their official codes. Tab. 4 shows that our SRFBN-
S and SRFBN have the fastest evaluation time in compar-
ison with other networks. This further reflects the effec-
tiveness of our proposed networks. The quantitative results
of our proposed networks are less comparable with RCAN,
but RCAN mainly focuses on much deeper networks design
(about 400 convolutional layers) to purchase more accurate
SR results. In contrast, our SRFBN only has about 100 con-
volutional layers with 77% fewer parameters (3,631K vs.
15,592K) than RCAN.

5. More Qualitative Results
In Fig. 3-14, we provide more visual results of different

degradation models to prove the superiority of the proposed
network.
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 img_099  from Urban100
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Figure 3. Visual results of BI degradation model with scale factor ×4.

HR Bicubic VDSR DRRN

MemNet img_004  from Urban100 EDSR D-DBPN SRFBN (Ours)

Figure 4. Visual results of BI degradation model with scale factor ×4.
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Figure 5. Visual results of BI degradation model with scale factor ×4.
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MemNet EDSR D-DBPN SRFBN (Ours) MariaSamaNihaNaisyo  from Manga109

Figure 6. Visual results of BI degradation model with scale factor ×4.
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IRCNN_G img_010  from Urban100 SRMDNF RDN SRFBN (Ours)

Figure 7. Visual results of BD degradation model with scale factor ×4.

HR Bicubic SRCNN VDSR

IRCNN_G img_028  from Urban100 SRMDNF RDN SRFBN (Ours)

Figure 8. Visual results of BD degradation model with scale factor ×4.
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IRCNN_G SRMDNF RDN SRFBN (Ours) MisutenaideDaisy  from Manga109

Figure 9. Visual results of BD degradation model with scale factor ×4.

HR Bicubic SRCNN VDSR

IRCNN_G SRMDNF RDN SRFBN (Ours) MukoukizuNoChonbo  from Manga109

Figure 10. Visual results of BD degradation model with scale factor ×4.
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HR Bicubic SRCNN VDSR

IRCNN_C SRMD RDN SRFBN (Ours) head  from Set14

Figure 11. Visual results of DN degradation model with scale factor ×4.

HR Bicubic SRCNN VDSR

IRCNN_C SRMD RDN SRFBN (Ours) img_032  from Urban100

Figure 12. Visual results of DN degradation model with scale factor ×4.
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IRCNN_C SRMD RDN SRFBN (Ours) img_062  from Urban100

Figure 13. Visual results of DN degradation model with scale factor ×4.
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Figure 14. Visual results of DN degradation model with scale factor ×4.
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