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1. Proofs
1.1. Proof of Lemma 1

Lemma 1. Assume there exists a dual certificate Λ and the
perturbation H obeying PΩ(H) = 0. Then the inequality

‖Q(M0 + H)‖∗
≥ ‖Q(M0)‖∗ + (1− ‖RΛ‖2) ‖PT⊥Q(H)‖∗

obeys.

Proof. At the beginning, we can easily get the sub-gradient
of f(X) = ‖Q (X) ‖∗ by the chain rule for differentiation.
Assuming arbitrary Z ∈ ∂‖Q(M0)‖∗, due to the convexity
of the nuclear norm, the following inequality holds

‖Q(M0 + H)‖∗ ≥ ‖Q(M0)‖∗+ < Z,H > . (1)

Due to the definition of Λ, Z satisfies the following equa-
tion:

Z = Λ−Q?(RΛ) +Q?PT⊥(Z). (2)

Combing the two formulas above, it can be obtained that

‖Q(M0 + H)‖∗ ≥‖Q(M0)‖∗+ < Λ,H >

+ < PT⊥(Z)−RΛ,PT⊥(Q(H)) > .

(3)

Owing to the arbitrary picking of Z from the sub-gradient
of f , there must exists a specific Ẑ such that

< PT⊥(Z),PT⊥(Q(H)) >= ‖PT⊥(Q(H))‖∗. (4)

Furthermore, by using the duality between the spectral and
nuclear norm, we have

< RΛ,PT⊥(Q(H)) >≤ ‖RΛ‖2‖PT⊥(Q(H))‖∗. (5)

Combing the formulas (3)-(5) and the fact that < Λ,H >=
0, we can obtain the result shown in Lemma 1.

1.2. Proof of Theorem 1

Assumption 1. Let NQ and NΩ denote the null of the linear
transformations Q and PΩ, respectively. We assume that
the relation NQ ∩ NΩ = {0} obeys.

Theorem 1 (Error bound for a single Q). With Assumption
1, and suppose the additional assumptions:

i) there exists a dual certificate obeying ‖RΛ‖2 < 1;

ii) ∃p > 0, s.t.PTQPΩQ?PT � pI

iii) The product [Q]〈2〉 · [Q]
?
〈2〉 is a diagonal matrix.

Then the solution of

min
X∈Rm1×m2

‖Q(X)‖∗ s.t. ‖PΩ(X)− PΩ(Y)‖F ≤ δ,

M̂ obeys

‖M̂−M0‖F

≤ 2δ · cond(Q)
1− ‖RΛ‖2

√
min{n1, n2}(p+ ‖ [Q]〈2〉 ‖22)

p
.

(6)

Proof. Let M̂−M0 = H, then

‖H‖2F = ‖HΩ + HΩc‖2F = ‖HΩ‖2F + ‖HΩc‖2F , (7)

where HΩ = PΩ(H) and HΩc = (I − PΩ)(H). For HΩ,
we have

‖HΩ‖F
= ‖PΩ(M̂)− PΩ(HΩc)‖F
= ‖(PΩ(M̂)− PΩ(Y))− (PΩ(M0)− PΩ(Y))‖F
≤ ‖PΩ(M̂)− PΩ(Y)‖F + ‖PΩ(M0)− PΩ(Y)‖F
≤ 2δ.

(8)



On the other side, for HΩc , we split ‖HΩc‖F into two parts
by the null space of Q, i.e.

‖HΩc‖2F
= ‖PNQ(HΩc) + PNc

Q
(HΩc)‖2F

= ‖PNQ(HΩc)‖2F︸ ︷︷ ︸
item1.1

+ ‖PNc
Q
(HΩc)‖2F︸ ︷︷ ︸

tiem1.2

.
(9)

Due to Assumption 1, we can easily get that the item 1.1
equals zeros, i.e.,

‖PNQ(HΩc)‖F = 0. (10)

Hence,
PNc
Q
(HΩc) = HΩc , (11)

and we denote for brevity that

‖H̃‖F := ‖HΩc‖F . (12)

Assume the truncated singular value decomposition (SVD)
of the unfolding [Q]〈n〉 = UQDQVT

Q in which only the
singular vectors related to non-zero vectors are kept. Then
we have the following inequalities

‖H̃‖F = ‖VT
QH̃‖F

= ‖D−1
Q DQVT

QH̃‖F
≤ ‖D−1

Q ‖2‖DQVT
QH̃‖F

= ‖D−1
Q ‖2‖UQDQVT

QH̃‖F
= σmin([Q]〈2〉)

−1‖Q(H̃)‖F ,

(13)

where σmin([Q]〈2〉) denotes the smallest non-zero singular
value of [Q]〈2〉. In (13), the first equation holds because
of (12), and the inequality holds owing to the definition of
the matrix spectral norm. Next, we further split ‖Q(H̃)‖F
based on the tangent space T. Then we have

‖Q(H̃)‖2F = ‖PTQ(H̃)‖2F︸ ︷︷ ︸
item2.1

+ ‖PT⊥Q(H̃)‖2F︸ ︷︷ ︸
item2.2

. (14)

We first bound the item 2.2 in the following proof. Accord-
ing Lemma 1, we have

‖Q(M0+H̃)‖∗ ≥ ‖Q(M0)‖∗+(1−‖RΛ‖2)‖PT⊥Q(H̃)‖∗.
(15)

Furthermore, since M̂ is the optimal solution of (3), we
have

‖Q(M0)‖∗ ≥ ‖Q(M̂)‖∗
= ‖Q(M0 + HΩ + H̃)‖∗
≥ ‖Q(M0 + H̃)‖∗ − ‖Q(HΩ)‖∗

(16)

Combing (15) and (16), we get

‖PT⊥Q(H̃)‖∗ ≤
1

(1− ‖RΛ‖2)
‖Q(HΩ)‖∗

≤
√
min{n1, n2}

(1− ‖RΛ‖2)
‖Q(HΩ)‖F

≤
√
min{n1, n2}

(1− ‖RΛ‖2)
‖Q‖2‖HΩ‖F .

(17)

By using the relationship between the nuclear norm and
Frobenius norm and the inequalities (17), we have

‖PT⊥Q(H̃)‖F ≤ ‖PT⊥Q(H̃)‖∗

≤
2
√

min{n1, n2}
1− ‖RΛ‖2

‖Q‖2δ
. (18)

For the item 2.1, we have

‖PΩQ?PTQ(H̃)‖2F =
〈
PΩQ?PTQ(H̃),PΩQ?PTQ(H̃)

〉
=
〈
PTQPΩQ?PTQ(H̃),PTQ(H̃)

〉
≥ p‖PTQ(H̃)‖2F ,

(19)

where the inequality holds because of the second assump-
tion in the theorem. For the left side of the equation (19),
we have

‖PΩQ?PTQ(H̃)‖F = ‖PΩQ?(I − PT⊥)Q(H̃)‖F
≤ ‖PΩQ?Q(H̃)‖F + ‖PΩQ?PT⊥Q(H̃)‖F
= ‖PΩQ?PT⊥Q(H̃)‖F
≤ ‖Q?PT⊥Q(H̃)‖F
≤ ‖Q‖2‖PT⊥Q(H̃)‖F ,

(20)

where the second equation holds because of the third as-
sumption of the theorem. Hence, the item 2.1 can be
bounded by

‖PTQ(H̃)‖F ≤
1
√
p
‖Q‖2‖PT⊥Q(H̃)‖F . (21)

As the result, combing (7), (8), (18) and (20), we can get a
total upper bound of the reconstruction error as given in the
theorem.



2. Proof of Theorem 2

Theorem 2. With the assumptions in Theorem 1 for the con-
catenation Q̃, and further assume that the tuning parame-
ter satisfies λ > ‖PΩ (H) ‖2/

√
min{m1,m2}. Then the

reconstruction error of

min
X∈Rm1×m2

1

2
‖PΩ(X)− PΩ(Y)‖2F + λ

∑
i∈[K]

‖Qi(X)‖∗.

is bounded by

‖M̂−M0‖F

≤ 8λ

min{m1,m2}+
∑
i∈[K]

√
min{n(i)

1 , n
(i)
2 }‖ [Qi]<2> ‖2


·
cond(Q̃) ·min{

∏
n

(i)
1 ,
∏
n

(i)
2 }(p+ ‖

[
Q̃
]
<2>
‖2)

p(1− ‖RΛ‖2)2
.

(22)

Proof. Let M̂ be the optimal solution of

min
X∈Rm1×m2

1

2
‖PΩ(X)− PΩ(Y)‖2F + λ

∑
i∈[K]

‖Qi(X)‖∗.

(23)
Then we can naturally obtain the following inequality

1

2
‖PΩ(M̂)− PΩ(Y)‖2F + λ

∑
i∈[K]

‖Qi(M̂)‖∗

≤ 1

2
‖PΩ(M0)− PΩ(Y)‖2F + λ

∑
i∈[K]

‖Qi(M0)‖∗
. (24)

In addition, we have

‖PΩ(M̂)− PΩ(Y)‖2F
= ‖PΩ(M̂)− PΩ(M0) + PΩ(M0)− PΩ(Y)‖2F
= ‖PΩ(M̂)− PΩ(M0)‖2F + ‖PΩ(Y)− PΩ(M0)‖2F
− 2

〈
PΩ(M̂)− PΩ(M0),PΩ(Y)− PΩ(M0)

〉
.

(25)

Combing (24) and (25), and assuming that ‖M‖Q :=∑
i∈[K] ‖Qi (M) ‖ for brevity, the following equality holds

1

2
‖PΩ(M̂)− PΩ(M0)‖2F

≤
〈
PΩ(M̂)− PΩ(M0),PΩ(Y)− PΩ(M0)

〉
+ λ

(
‖M0‖Q − ‖M̂‖Q

)
.

(26)

Assume assume the error E = M̂−M0. The partial recon-
struction error can be bounded by the following inequalities

1

2
‖PΩ(E)‖2F
≤ 〈PΩ(E),PΩ(H)〉+ λ‖E‖Q
= 〈E,PΩ(H)〉+ λ‖E‖Q
≤ ‖E‖∗‖PΩ(H)‖2 + λ‖E‖Q.

(27)

In (27), the first inequality holds owing to the triangle in-
equality, and the second inequality holds because of the
dual relationship between the matrix spectral and nuclear
norm. By using the assumption in the theorem that λ >
‖PΩ (H) ‖2/

√
min{m1,m2}, we have

1

2
‖PΩ(E)‖2F

≤ λmin{m1,m2}‖E‖F + λ
∑
i∈[K]

‖Qi(E)‖∗

≤ λmin{m1,m2}‖E‖F+

λ
∑
i∈[K]

√
min{n(i)

1 , n
(i)
2 }‖Qi(E)‖F

≤ λ
(
min{m1,m2}+∑

i∈[K]

√
min{n(i)

1 , n
(i)
2 }‖ [Qi]<2> ‖2

)
‖E‖F

.

(28)

By using Theorem 1 in the paper, we have

‖E‖2F ≤ 4‖PΩ(E)‖2F ·

cond(Q̃) ·min{
∏
n

(i)
1 ,
∏
n

(i)
2 }(p+ ‖

[
Q̃
]
<2>
‖2)

p(1− ‖RΛ‖2)2
.

(29)

Combing (28) and (29), we can the final results. The proof
is completed.

3. Additional materials of the experiment
3.1. Influences by λ

In this section, we discuss how the completion perfor-
mance is influenced by the tuning parameter λ in the ex-
periment (see Fig. 2). Specifically, we test our method
with same configuration given in the paper but choose dif-
ferent λ . As to the observation, we use “URC” as the miss-
ing pattern with different observation percentage perc =
0.1, 0.3, 0.5, 0.7, 0.9. As shown in Fig. 2, although the
overfitting phenomena becomes serious if we choose too
small λ, but the performance decrease slowly if we choose
larger λ, specially when the observation percentage is small.
It implies that the completion performance is robust to λ
with a large variable range.



Figure 1. 12 images used as the dataset to evaluate the performance of the proposed method.
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Figure 2. Performance for image inpainting with different λ. Dif-
ferent lines in the figure represent different observation percentage
perc = 0.1, 0.3, 0.5, 0.7, 0.9. It can be seen that the performance
with different λ is stable when λ is large enough (λ > 1). The
overfitting phenomena becomes serious if we choose small λ, but
the performance decrease slowly if we choose larger λ, specially
when the observaton percentage is small.


