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1. Proof of Theorem 3.1 in Section 3.3
Proof. Let f̂(e) be the pdf estimated using the Parzen window estimation, i.e.,

f̂(e) =
1

N

N∑
i=1

κσ(e− ei).

In order to prove H2(e) = H̄2(e) under the i.i.d. assumption, we first show that f̂(e) is equivalent to f̂Iq(e) (Iq ∈ [1, N ])
in terms of the mean integrated squared error (MISE) [5]. Since f̂Iq(e) and f̂(e) are density estimators over finite samples
independently sampled from the same distribution, we prove their equivalence by showing that

MISE(f̂Iq(e), f̂(e)) = 0,

where

MISE(f̂I(e), f̂(e)) = E

∫ (
f̂Iq(e)− f̂(e)

)2
de

=

∫
E
((
f̂Iq(e)− f̂(e)

)2)
de

(1)

Note that E(·) takes the expected value over all possible sequences e. By the definitions of f̂Iq(e) and f̂(e), we have

E
((
f̂Iq(e)− f̂(e)

)2)
= E

(
f̂Iq(e)

2 + f̂(e)2 − 2f̂Iq(e)f̂(e)
)

= E

(
N∑
i=1

c(Dq,i)κσ(e− êi)

)2

+ E

(
N∑
i=1

1

N
κσ(e− êi)

)2

− 2E

 N∑
i,j=1

1

N
c(Dq,i)κσ(e− êi)κσ(e− êj)


= E

 N∑
i,j=1

Ui,jκσ(e− êi)κσ(e− êj)

 ,

where

Ui,j = c(Dq,i)c(Dq,j) +

(
1

N

)2

− 2

N
c(Dq,i)

Since e is generated by an i.i.d. source, we have

E (κσ(e− êi)κσ(e− êj)) = E
(
[κσ(e− ê)]2

)
.
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Then

E
((
f̂Iq(e)− f̂(e)

)2)
=

N∑
i,j=1

Ui,jE
(
[κσ(e− ê)]2

)
Since c(·) ≥ 0 and

∑N
i=1 c(Dq,i) = 1 for each Iq , it can be readily proved that

N∑
i,j=1

Ui,j = 0.

So MISE(f̂Iq(e), f̂(e)) = 0 for all Iq ∈ [1, N ]. Finally we have

H̄2(e) = − 1

N

∑
Iq

log

∫ (
f̂Iq (e)

)2
de

= − 1

N

∑
Iq

log

∫ (
f̂(e)

)2
de (2)

= −
∫ (

f̂(e)
)2
de = H2(e) (3)

This completes the proof.

2. Proof of
∑

i wi,j = 1 in (31)

Proof. Since
∑N
i=1 c(Dq,i) = 1 for any q, and c(x) is an even function, we can directly have

∑
q c(Dq,j) = 1 for any Ij .

Then ∑
i

wi,j =
∑
i

∑
q

cqi,j =
∑
i

∑
q

c(Dq,i)c(Dq,j)

=
∑
q

∑
i

c(Dq,i)c(Dq,j)

=
∑
q

c(Dq,j) = 1. (4)

This completes the proof.

3. Algorithm for the Problem Shown in (32)
For simplicity, we replace the notation

√
2σ by σ in (32). Define the objective function in (32) as J(z), i.e.,

J(z) = −
N∑
i=1

κσ(ỹi − x̃iz) + λ||z||1. (5)

Since the first term of J(z) is highly nonlinear, making the problem (32) difficult to directly optimize. Fortunately, we show
that (32) can be efficiently solved by applying the half-quadratic theory [4], which is widely used for ITL-based optimization
problems [2]. According to the property of convex conjugate function [1], we have:

Proposition 1. For the function κσ(x), there exists a convex conjugate function ϕ(·) of κσ(x), such that

κσ(x) = sup
s

(sx2
σ2
− ϕ(s)

)
. (6)

Given x, the supremum is reached at s = −κσ(x).



Letting u = − s
σ2 and defining a function ψ(u) = ϕ(−σ2u), (6) can be equivalently written as

−κσ(x) = inf
u

(
ux2 + ψ(u)

)
. (7)

The infimum is then achieved at u = 1
σ2κσ(x). Now we rewrite (5) as an augmented cost function

J(z,u) =

N∑
i=1

(
ui(ỹi − x̃iz)2 + ψ(ui)

)
+ λ||z||1, (8)

where u = [u1, ..., uN ]T are the auxiliary variables introduced by half-quadratic optimization. According to (7), for a fixed
z, we have

J(z) = min
u
J(z,u).

Then the original problem (29) is identical to minimizing the augmented cost function, i.e.,

min
z
J(z) = min

z,u
J(z,u). (9)

According to the half-quadratic optimization [4], J(z,u) can be minimized in the following alternate steps:

ut+1
i =

1

σ2
κσ(ỹi − x̃iz

t), i = 1, 2, · · · , N, (10)

zt+1 = argmin
z

(ỹ − X̃z)T diag(ut+1)(ỹ − X̃z) + λ||z||1, (11)

where t means the t-th iteration, ỹ = [ỹ1, ..., ỹN ]T , X̃ = [x̃T1 , ..., x̃
T
N ]T and diag(·) is an operator to convert a vector to a

diagonal matrix. The convergence of the algorithm was proved in [4]. The subproblem (11) can be efficiently solved using
the sparse coding method proposed in [3].
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