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1. Proof of Theorem 3.1 in Section 3.3

Proof. Let f (e) be the pdf estimated using the Parzen window estimation, i.e.,

(e —e;).
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In order to prove Hy(e) = Hj(e) under the i.i.d. assumption, we first show that f(e) is equivalent to qu(e) Iy € [1,N])
in terms of the mean integrated squared error (M ISE) [5]. Since fj,(e) and f(e) are density estimators over finite samples
independently sampled from the same distribution, we prove their equivalence by showing that

MISE(f1(e), f(e)) =

where

MISE(fi(e), f(e)) = E / (Fra(e) = fle)) de

= / B ((frale) - f(e))*) de

Note that E(-) takes the expected value over all possible sequences e. By the definitions of f, 14(€) and f(e), we have
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Uij = c(Dgi)e(Dy ) + (N) — 7 (Da.i)
Since e is generated by an i.i.d. source, we have

E (kole — &)ko(e — é;)) = E ([ka(e — &)]?) .



Then N
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Since ¢(-) > 0 and Zf\il ¢(Dg,;) = 1 for each I, it can be readily proved that
N
> Ui, =0.
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So MISE(fIq(e),f(e)) = 0 for all I; € [1, N]. Finally we have
_ 1 . 2
Hy(e) = NJZlog/ (flq(e)> de
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This completes the proof. O
2. Proofof > . w;; = 1in (31)

Proof. Since Zivzl ¢(Dq,;) = 1 for any ¢, and c(z) is an even function, we can directly have > c(Dg ;) = 1 for any I;.

Then
Z Wij = Z docli= Z > e(Dyi)e(Dy,)
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This completes the proof. O

3. Algorithm for the Problem Shown in (32)

For simplicity, we replace the notation /20 by o in (32). Define the objective function in (32) as .J(z), i.e.,

N
J(z) == kol — %iz) + Allz)1. 5)
i=1

Since the first term of J(z) is highly nonlinear, making the problem (32) difficult to directly optimize. Fortunately, we show
that (32) can be efficiently solved by applying the half-quadratic theory [4], which is widely used for ITL-based optimization
problems [2]. According to the property of convex conjugate function [ 1], we have:

Proposition 1. For the function k,(x), there exists a convex conjugate function p(-) of Ky (), such that

81'2

(@) = sup( T — p(s)). ©

Given x, the supremum is reached at s = —K, ().



Letting u = — -5 and defining a function ¥ (u) = ¢(—02u), (6) can be equivalently written as

—kg (1) = igf(ua:2 + w(u)) (7

The infimum is then achieved at u = #ng (z). Now we rewrite (5) as an augmented cost function

Taw) = (waldi = %i2)® + 0(ue) ) + Al ®)
i=1
where u = [ug, ..., un]?
z, we have

are the auxiliary variables introduced by half-quadratic optimization. According to (7), for a fixed
J(z) = min J(z,u).
Then the original problem (29) is identical to minimizing the augmented cost function, i.e.,

mzin J(z) = min J(z, u). )

z,u

According to the half-quadratic optimization [4], J(z, u) can be minimized in the following alternate steps:

1
ultt = —ho(li —%iz'), i =1,2,--- N, (10)
2"t = argmin (y — Xz) diag(u' ) (3 — Xz) + \||z]|1, (11)
z
where t means the t-th iteration, ¥ = [§1, ..., 7n]7, X = [XT,...,x%]7 and diag(-) is an operator to convert a vector to a

diagonal matrix. The convergence of the algorithm was proved in [4]. The subproblem (11) can be efficiently solved using
the sparse coding method proposed in [3].
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