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S.1. Numerical Stability Control

In our differentiable model estimator, we are solving two
linear algebra problems: homogeneous least square and un-
constrained least square. In both problems, numerical sta-
bility issues can occur.

We solve the homogeneous least square using SVD to
find v, the right singular vector corresponding to the small-
est singular value. However, when backpropagating the gra-
dient through SVD [1, 2], the gradient value goes to infinity
when the singular values of the input matrix are not all dis-
tinct. In our case, such an issue happens only when the out-
put segment (decided by membership matrix Ŵ) becomes
degenerate. For instance, when fitting a plane to a segment
via SVD, non-distinct singular values correspond to the case
where the points in the segment with significant weights
concentrate on a line or a single point. Hence if we get good
segmentation by minimizing the segmentation loss (Sec-
tion 3.3 in the paper), then such degenerate cases should
not happen. Thus, we handle the issue by simply bound-
ing the gradient in the following way. We implemented a
custom SVD layer following [1, 2], and when computing
Kij =

1
σi−σj

in Equation 13 of [1] where σi, σj are singu-
lar values, we instead use Kij = 1

sign(σi−σj)max(|σi−σj |,ε)
for ε = 10−10.

When solving the unconstrained least square using
Cholesky factorization, numerical unstability can happen
even when the segmentation is correct, but the type used
in the estimator does not match with the segment. For in-
stance, when fitting a sphere to a segment that is almost a
flat plane, the optimal sphere is the one with center at infin-
ity. To deal with such a singular case (as well as cases when
the segments are degenerate), we add a l2-regularizer to the
formulation (Equation 7 in the paper) and solve instead

min
c∈R3
‖diag(w)(Xc− y)‖2 + λ‖c‖2, (1)

with λ = 10−8. Even with such a modification, Cholesky
factorization can still become unstable when the condition
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number of diag(w)X is too large, where the condition num-
ber of a matrix is defined to be the ratio of its largest singular
value over its smallest singular value. To deal with this, we
trivialize the least square problem when the condition num-
ber is larger than 105 by setting X = 0 to prevent gradient
flow.

S.2. Training Details

We use the default hyperparameters for training Point-
Net++ [3] with a batch size of 16, initial learning rate 10−3,
and staircase learning decay 0.7. All neural network models
in the experiments are trained for 100 epochs, using Adam
optimizer. The longest experiment (SPFN and its ablation
studies) took 50 hours to train on a single Titan Xp GPU,
although the decay of the total loss was not substantial after
50 epochs. We will release our source code and include a
link to the code in the final version.

S.3. DPPN Architecture
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Figure S1: DPPN architecture.

The output of DPPN is simply a collection of 4Kmax
primitives including Kmax planes, Kmax spheres, Kmax
cylinders, and Kmax cones. In order to compare with SPFN
outputs, as a post-processing step, we construct auxiliary
membership matrix Ŵ by assigning each input point to
the closest primitive among the 4Kmax predicted primitives.
Similarly, we construct per-point type matrix T̂ by assign-
ing the type of each point to be the type of its closest primi-
tive. The numbers reported in Table 1 in the paper are com-
puted in the same evaluation pipeline as in SPFN after such
post-processing step.
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1 SPFN (Row 13 in Table 1) 77.14 96.93 8.66 1.51 0.011 ± 0.131 86.63 91.64 88.31 96.30

2 SPFN, 64k test input 77.29 97.27 8.50 1.49 0.010 ± 0.126 87.03 91.87 89.01 96.42
3 SPFN, w/ outliers 72.38 95.94 9.67 1.97 0.015 ± 0.147 82.57 88.78 79.75 88.44
4 SPFN, Kmax = 48 76.30 96.55 8.69 1.39 0.011 ± 0.134 85.77 90.52 88.09 95.42

Table S1: Results of additional experiments described in Section S.5. First row is the same as row 13 in Table 1 in the paper.
See Section 4.2 in the paper for the details of evaluation metrics. Lower is better in 3-5th metrics, and higher is better in the
rest.

S.4. Primitive Correspondences

Figure S2: Output primitives of SPFN. Colors indicating
column indices in Ŵ are consistent across shapes in the
same category.

Tulsiani et al. [5] and Sung et al. [4] introduced a type
of neural networks capable of discovering correspondences
across different inputs without direct supervision. Notice
in SPFN, changing the ordering of the columns in Ŵ does
not affect the loss. Despite such ambiguity, SPFN implicitly
learns a preferred order such that the primitives represented
by the same columns in Ŵ in different shapes appear to
be similar, resulting in rich correspondence information for
primitives from different shapes (Figure S2). These results
provide insight into the possible design variations for the
same category of shapes.

S.5. Additional Experiments

To further study the capability of SPFN, we have con-
ducted the following additional experiments.

PointNet++ [3] used in our architecture has a limita-
tion of handling high resolution point clouds during training
time due to the increase of memory consumption. However,
it is also known that PointNet++ is robust to the change
of the resolution of point clouds at test time (See Section
3.3 in [3]). Hence, we can consider processing high resolu-
tion input point clouds in the test time by training the net-
work with lower resolution point clouds. In Table S1, row 2
shows the results of testing 64k point clouds with the same
SPFN model in Table 1 in the paper (trained with 8k point
clouds), and it exhibits a slight improvement in nearly all
metrics. We also assessed SPFN by adding not only noise
in the inputs (as described in Section 4.1 in the paper) but
also outliers. Row 3 describes the results when we add 10%
outliers, which are uniformly sampled in space outside of
the central cube [−0.5, 0.5]3, in both training and test data.

The results show a little drop but still comparable perfor-
mance. Lastly, we also investigated how robust SPFN can
be if we change the maximum number of primitives, Kmax.
Row 4 illustrated the results when training the network with
Kmax = 48, and we observed no substantial difference in
performance.
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