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This supplemental material includes additional results,
discussions, and applications to further demonstrate the ad-
vantages of our multi-projection GAN framework. We or-
ganize this supplemental material in 3 parts: section 1 in-
cludes additional results of the 3D shape synthesis pipeline
as detailed in the main paper. Section 2 discusses the ap-
plication of multi-projection GAN to generate spatially-
varying surface reflectance from 2D images only. This
extension introduces different types of projection opera-
tors, further demonstrating the abilities of multi-projections
GANs to learn distributions and correlations from multiple
different types of sources. Finally, in section 3 we show
an example of how multi-projection GAN can learn the 2D
image distribution from the MNIST dataset from 1D obser-
vations only.

1. Part I: Additional Results for 3D Shape Gen-
eration

Network Structure For completeness, we reiterate the
network structure of our VP-MP-GAN and provide a visual
illustration of the structure. We follow the 3D voxel genera-
tor network structure of Wu et al. [11] which takes an input
vector sampled from N(0, 1) and outputs a 64 × 64 × 64
voxel grid via a sequence of 3D convolution and upsample
layers. We employ batch normalization after each convolu-
tion and upsample layer and use the ReLU activation func-
tion.

The discriminators take a 64×64 binary silhouette image
as input, and output a single scalar probability value. Each
discriminator contains 4 convolutional blocks with a stride
of 2, followed by a single fully-connected layer. We share
the first convolutional layers among the different discrim-
inators, and use spectrum normalization [7] for each layer
with the LeakyReLU activation function.

The view prediction network shares the same convolu-
tional structure as the discriminator network, but with us-

ing batch normalization instead of spectrum normalization,
and outputting the probability for the 16 discrete view-bins.
Figure 1 details the network structure of the generator, dis-
criminator and view prediction networks.

Additional results Figures 2, 3, and 4 show additional re-
sults for the bird, chair, and car dataset. We visualize the
generated shapes from additional viewpoints to better high-
light the quality of the 3D shapes. We would like to high-
light that all the results are trained from real photographs
only. Figure 5 shows a selection of the training data (both
the silhouette image as well as the original source photo-
graph not used for view prediction) assigned to the different
viewpoints by our view prediction network.

2. Part II: SVBRDF Synthesis using Multi-
Projection GANs

To further demonstrate the flexibility and efficiency of
our multi-projection GAN, we train it for Spatially-Varying
Bidirectional Reflectance Distribution Function (SVBRDF)
modeling of wood, plastic, and metal materials. First, we
will briefly introduce the definition of the SVBRDF model.
Followed by a description of the data and training setup.
Finally, we discuss and analyze the results.

2.1. SVBRDF Definition

We make a number of assumptions common in SVBRDF
modeling. We assume the material surface is roughly pla-
nar, thus each pixel corresponds to a surface point. We
characterize the surface reflectance at each surface point
with four reflectance property maps: an RGB diffuse albedo
map (kd), a monochrome specular albedo map (ks), a sur-
face normal map (n), and a monochrome roughness map
(m). These property maps in turn drive a Cook-Torrance [3]
BRDF model to describe the angular variations of the
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Figure 1. Network structure for VP-MP-GAN for synthesizing 3D voxel shapes.

SVBRDF at each surface point:

fr(x, ωi, ωo) =
kd(x)

π
+ (1)

ks(x)

4

D(h,m(x))G(ωi)G(ωo)F(h, η)

cos(θi) cos(θo)
,

(2)

where x is the spatial position, and ωi = (φi, θi) and
ωo = (φo, θo) are the incident and outgoing directions,
h is the halfway vector between ωi and ωo, D(·, ·) is the
spatially-varying Beckmann microfacet distribution param-
eterized by roughness m(x), G(·) is the shadowing and
masking term, and F(·, ·) is the Fresnel reflectance com-
puted by Schlick’s approximation. We store each spatially
varying diffuse albedo kd(x), specular albedo ks(x), rough-
ness m(x), and surface normals n(x) in texture maps. Our
goal is to learn the distribution of these four property maps
for a class of materials, such as wood, plastic, or metal.

2.2. Network Description

We follow the basic architecture of DCGAN [8] for both
the generator and discriminator networks. As shown in
Figure 6 the generator takes as input Z ∈ R512 randomly
drawn from a uniform distribution U(−1, 1), and it pro-
duces 64 × 64 output images. We employ the LeakyReLU
activation function [6] and use batch normalization [4] for
each layer, except for the last layer which employs a sig-
moid activation function. We employ four identical net-
works for each property map (i.e., diffuse albedo, specular
albedo, normal map, and roughness map) that share the first

two layers; we expect the different maps to share the same
high level features. Similarly, the discriminator contains a
succession of convolutional layers with the LeakyReLU as
an activation function, and each layer is followed by a batch
normalization step. To efficiently deal with the large varia-
tions between the output maps, we also output a global scale
factor for the diffuse albedo, specular albedo, and roughness
maps. To generate the final property map, we multiply each
of these maps with their respective scale factor. All discrim-
inators use the same architecture, each differing in their data
dimensions and projection operators. We also employ mini-
batch discrimination [9] for the discriminators.

2.3. Projection Operators

We consider two projection types: a selection and a ren-
dering projection.

Selection Projection: The selection projection directly
outputs one of the property maps. Hence, there are four
variants of the selection projection that each outputs either
the diffuse albedo map, the specular albedo map, the normal
map, or the specular roughness map. The selection pro-
jection has no additional latent parameters, and it serves to
inform what a typical albedo map, normal map, or rough-
ness map “looks like”. While these maps are sufficient to
model the separate spaces of each property map, they do
not provide any cues on the component interrelations, and
thus additional projection types are needed.



Rendering Projection: The rendering projection takes as
latent parameters viewpoint and the parameters for one of
three types of lighting conditions: natural environmental
lighting, directional lighting, and constant ambient lighting.
The output is an image of the material seen from the view-
point and under the a randomly selected lighting sampled
from the lighting class. The view is always aimed at the
material map center. The projection from the four property
maps to a rendered image is governed by:

I(x, ωo) =

∫
Ω

fr(x, ωi, ωo) max(cos θi, 0)L(ωi) dωi, (3)

where ωo is the direction towards the camera sensor and
which is defined by the camera’s intrinsic and extrinsic pa-
rameters, fr is defined by Equation 2, and L(ωi) is the inci-
dent lighting defined over the sphere of directions Ω. Note
that this rendering process assumes that the natural lighting
is distant (i.e., only it depends on direction and not posi-
tion), and that there is no interreflection or shadowing. We
evaluate Equation 3 using Monte-Carlo integration for each
x independently. We improve convergence by importance
sampling according to the diffuse (first term in Equation 2)
and specular part (second term in Equation 2) of the surface
reflectance defined at each pixel; we select which BRDF
component to sample proportional to their respective albe-
dos. The rendered images will be compared to regular pho-
tographs, and thus we need to include the typical camera
post-processing steps too. To this end, we simulate auto-
exposure by normalizing the lighting based on the total in-
tensity of the upper-hemisphere of the incident lighting, and
apply a 2.2 gamma correction and clamp pixel values to 1.0.

2.4. Differential Rendering

For the rendering projection, we employ differential ren-
dering to compute the gradients with respect to the different
property maps. The derivatives with respect to the diffuse
and specular albedo are relatively straightforward:

∂I(x)

∂kd(x)
=

1

π

∫
Ω

max(cos θi, 0)L(ωi) dωi, (4)

∂I(x)

∂ks(x)
=

1

4

∫
Ω

D(h,m(x))G(ωi)G(ωo)F(h, η)

cos(θo)
dωi.

(5)

Again, both integrals are evaluated using Monte-Carlo
integration.

The partial derivative with respect to specular roughness
and surface normal are computed with finite differencing.
To avoid Monte-Carlo noise aversely impacting the gradi-
ents, we reuse the same set of samples to compute each
term of the finite difference (based on importance sampling
of one of the BRDFs). We evaluate the finite difference for
roughness for a step of ∆m = 0.001. For the surface nor-
mal, we first convert the normal n = (x, y, z) to spherical

coordinates (φn, θn), and compute the 2D finite difference
for a step of ∆φn = ∆θn = 0.001.

2.5. Training Data

We collect two datasets: a large dataset for wood ma-
terials intended for validation experiments, and an addi-
tional dataset for metals to demonstrate the generality of
our method.

In order to compare the quality of our result direct to the
results generated by a regular high-dimensional GANs (i.e.,
training four the four property maps directly), we desire a
sufficiently large SVBRDF dataset. Due to lack of such
an existing dataset, we rely on artists to help create such
a dataset. First, we let artists select 11, 000 image patches
of wood materials from the OpenSurfaces dataset [2] which
are then fed in to a single image SVBRDF estimation net-
work [5]. This method generates the diffuse albedo map,
normal map, and a homogeneous specular roughness and
albedo. To obtain a full spatially-varying specular compo-
nent, we use an artist-defined transfer function that gen-
erates the specular component directly from the diffuse
albedo map. Finally, the artists manually verify all gener-
ated SVBRDFs, and remove implausible SVBRDFs. The
resulting final dataset consists of 8, 000 plausible wood
SVBRDFs.

For the selection projections, we directly use (a ran-
domly selected subset of) the generated property maps as
training data. For the rendering projection, we use the same
rendering pipeline to generate training data from (a ran-
domly selected subset of) SVBRDFs. To light the render-
ings, we collect 98 natural light probes [10] and further aug-
ment this dataset by applying random rotations along the
up direction. The light and view configurations used for
the rendering projections in each experiment are detailed
in subsection 2.7.

For the metal and plastic training dataset, we collected
1, 000 artist generated SVBRDFs. However, unlike the
wood training dataset, we employ only real images (for the
rendering projections) of metal and plastic surfaces from
the OpenSurfaces dataset [2]. We classify these selected
images in two categories based on their apparent view: top
views (5, 000 images) and grazing views (5, 000 images).
The view ranges for the two image sets are 0±5◦ and 80±5◦

respectively. All images are taken under unknown natural
environmental lighting. No additional processing was pre-
formed to the images as we expect them to be auto-exposed
and auto white-balanced.

2.6. Implementation

We implemented our multi-projection SVBRDF GAN
(MP-SVBRDF-GAN) in TensorFlow [1], including a dif-
ferential render layer implemented in CUDA. All the ex-
amples in this document are trained using the ADAM opti-



mizer with a 10−4 learning rate, β1 = 0.5, β2 = 0.9. and a
1 : 1 training ratio between generator and discriminators.

2.7. Results

In this section, we report our results for SVBRDF mod-
eling of the wood, metal, and plastic datasets, as well as an
analysis of our method with respect: to learning the corre-
lations between the different SVBRDF property maps, and
to the impact of using multiple types and combinations of
projections.

Multi-Projection GAN versus High Dimensional GAN
We first compare the efficiency and accuracy on learning
the distribution of SVBRDFs for wood using our multi-
projection GAN versus a classic high-dimensional GAN
trained with a single discriminator and where the data dis-
tribution and the target distribution are identical (i.e., we
train directly from the corresponded property maps). For
the multi-projection GAN we employ six different pro-
jections: four selection projections that select the diffuse
albedo, specular albedo, specular roughness, and normal
maps respectively, and two rendering projections for top
view (0◦ from up direction) and grazing views (80◦ from
the up direction). Both projections are rendered with natural
environmental lighting. We use 500 samples per property
map; each sample is selected at random and independently
for each component, and we use 250 rendered images of
randomly selected materials for each rendering projection.
We add a ±5◦ random permutation to each view to simu-
late uncertainty in viewpoint estimation from photographs.
We train the classic high dimensional GAN from 650 sam-
ples from the high dimensional SVBRDF distribution. Each
sample consists of 4 property maps. Hence, the total num-
ber of training ’images’ is identical (= 2500). Figure 7
shows a comparison between a selection of SVBRDFs gen-
erated by the two GANs. While our multi-projection GAN
can successfully generate wood SVBRDFs, the high dimen-
sional GAN fails to produce reasonable results.

Subspace Training versus Learning Correlations The
selection projection is an extreme type of projection that
only provides cues to a specific subspace of the output dis-
tribution. Hence, it can be interpreted as training a GAN
that models a specific component. In general, we expect that
a lower dimensional subspace requires less training sam-
ples to learn. Correlations between different subspaces are
learned from the rendering projections. Figure 8 shows a
GAN trained with only the selection projections. As ex-
pected, the generated property maps are plausible, how-
ever, the correlations between the different property maps
are missing.

Our multi-projection GAN can model distributions with
correlated as well as uncorrelated subspaces. This is illus-

trated in Figure 8 where we intentionally correlate the dif-
fuse map and surface normals, and the specular albedo and
roughness map, but neither group of property maps corre-
lates to the other. We employ 500 samples to learn the dis-
tribution of each component, as well as 250 samples per
rendering projection. The view and lighting configuration
used for the rendering projections are the same as in the
first experiment. As shown in Figure 8, both the correlated
as well as uncorrelated relations of the property maps are
accurately modeled by our multi-projection GAN.

Comparison between Different Projection Combina-
tions In practice, however, obtaining direct observations
of the different components might not be easy. This raises
two questions: First, can we compensate a reduction in se-
lection projection training samples with additional render-
ing projection training samples? In addition, is it possible to
completely forgo selection projections by choosing proper
rendering projections?

To answer the first question, we further reduce the num-
ber of training samples for each selection projection to 250,
in which case our multi-projection GAN fails to produce
reasonable results (Figure 9 top). Next, we keep the num-
ber of samples for the selection projections fixed at 250, and
increase the number of samples for each rendering projec-
tion to 8, 000. As shown in Figure 9 (middle), while the
250 samples per selection projection are insufficient to even
infer a valid distribution for each component, the additional
8, 000 samples per rendering projection allow us to success-
fully model the correlations, as well as successfully improve
the distributions for each component.

To answer the second question, we further remove all the
dependence on selection projections, and use four rendering
projections that observe the sample frontally and that differ
in the types of illuminations: we categorize each training
sample based on whether the dominant illumination source
is a directional light (from normal incidence), a directional
light from a non-normal incidence direction, a natural envi-
ronmental lighting condition, or a constant ambient lighting
condition. We expect the rendering projection from the con-
stant ambient lighting to produce strong cues for the diffuse
albedo, the normal incidence directional light and the natu-
ral lighting to produce good cues on the specular albedo and
roughness, and the random directional lighting to provide
cues for the surface normals. With 6, 000 independently
selected samples per projection we are able to successfully
learn the distribution of wood SVBRDFs (Figure 9 bottom).

Additional Experiments In Figures 10 and 11 we
demonstrate that our multi-projection SVBRDF GAN gen-
eralizes beyond wood SVBRDFs by learning the distribu-
tion of the surface appearance of metals and plastics. The
metal and plastic datasets are described in subsection 2.5.



During training, for each rendering projection, we render
the generated property maps using the view distribution
gathered from the real training images and use a randomly
selected natural environmental lighting condition.

3. Part III: Multi-projection GAN for MNIST
dataset

To demonstrate that our automatic view-prediction
multi-projection GAN is also suited for other types of
datasets other than 3D shape modeling, we provide a “syn-
thetic” example where we learn the distribution from the
MNIST dataset (Figure 12). For this example, we use 10
projections that given a 2D direction, integrates the space
along this 1D direction. We add a latent variable that adds
a small (+/- 2.5 degrees) perturbation to the projection di-
rection. We ensure that the projection has the same ’width’
as the 2D image space, and further ensure that the center of
the projection space is aligned with the center of the 2D im-
age space. The training data was generated using the same
projections including the perturbation. We show training
results using MP-GAN (with known view distribution), as
well as VP-MP-GAN where we also predict the projection
directions.

References
[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,

M. Devin, S. Ghemawat, G. Irving, M. Isard, M. Kudlur,
J. Levenberg, R. Monga, S. Moore, D. G. Murray, B. Steiner,
P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and
X. Zheng. Tensorflow: A system for large-scale machine
learning. In OSDI, pages 265–283, 2016. 3

[2] S. Bell, P. Upchurch, N. Snavely, and K. Bala. OpenSurfaces:
A richly annotated catalog of surface appearance. ACM
Trans. on Graph., 32(4), 2013. 3

[3] R. L. Cook and K. E. Torrance. A reflectance model for
computer graphics. ACM Trans. Graph., 1(1):7–24, 1982. 1

[4] S. Ioffe and C. Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. In
ICML, pages 448–456, 2015. 2

[5] X. Li, Y. Dong, P. Peers, and X. Tong. Modeling
surface appearance from a single photograph using self-
augmented convolutional neural networks. ACM Trans.
Graph., 36(4):45:1–45:11, July 2017. 3

[6] A. L. Maas, A. Y. Hannun, and A. Y. Ng. Rectifier nonlin-
earities improve neural network acoustic models. In ICML,
2013. 2

[7] T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida. Spectral
normalization for generative adversarial networks. In ICLR,
2018. 1

[8] A. Radford, L. Metz, and S. Chintala. Unsupervised repre-
sentation learning with deep convolutional generative adver-
sarial networks. arXiv, 2015. 2

[9] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Rad-
ford, X. Chen, and X. Chen. Improved techniques for train-
ing gans. In D. D. Lee, M. Sugiyama, U. V. Luxburg,

I. Guyon, and R. Garnett, editors, NIPS, pages 2234–2242.
2016. 2

[10] J. Shi, Y. Dong, H. Su, and S. X. Yu. Learning non-
lambertian object intrinsics across shapenet categories. In
CVPR, pages 5844–5853, 2017. 3

[11] J. Wu, C. Zhang, T. Xue, W. T. Freeman, and J. B. Tenen-
baum. Learning a probabilistic latent space of object shapes
via 3d generative-adversarial modeling. In NIPS, pages 82–
90, 2016. 1



Figure 2. Additional results of VP-MP-GAN for the chair dataset, visualized from different views. All results are synthesized by a generator
trained on silhouettes from real-world images.



Figure 3. Additional results for VP-MP-GAN on the bird dataset, visualized from different views. All results are synthesized by a generator
trained on silhouettes from real-world images.



Figure 4. Additional results for VP-MP-GAN on the car dataset, visualized from different views. All results are synthesized by a generator
trained on silhouettes from real-world images.



Figure 5. Unannotated training silhouettes and corresponding source photographs for the real-world chair, bird, and car datasets. Note that
the corresponding views for each group are not provided as training labels; they are the result of the viewpoint prediction network jointly
trained with VP-MP-GAN.

Figure 6. Summary of the multi-projection SVBRDF GAN structure.



Diffuse Specular Roughness Normal Rendering
Figure 7. Selected SVBRDFs generated with the high-dimensional GAN (middle) and our multi-projection GAN (bottom) compared to
reference training data (top).

Ground truth Our results Selection only Ground truth Our results
Figure 8. Left: The rendering projections enable our multi-projection GAN to automatically learn the correlations between the property
maps. While training without the rendering projections still produces plausible property maps, it misses the correct interrelations. Right: An
example of a (by design) partially correlated dataset, our multi-projection GAN is still able to infer the correct embedded (un)correlations
from the data. For each example we show, left to right, diffuse albedo, normal map, specular albedo, and roughness.



Diffuse Specular Roughness Normal Rendering
Figure 9. Top: Multi-projection GAN trained with an insufficient number of training samples (250 for each selection and rendering
projection). Middle: Increasing the training samples to 8, 000 for the rendering projections only, correctly infers the correlation between
the different property maps, as well as improve the fidelity of the distributions of each property map. Bottom: multi-projection GAN
trained with only four rendering projections (and no selection projection), each based on a different class of illumination, can successfully
learn the distribution of wood SVBRDFs.

Diffuse Specular Roughness Normal Rendering
Figure 10. Plastic SVBRDF generator trained with multi-projection GAN (bottom), compared to reference training data (top).



Diffuse Specular Roughness Normal Rendering
Figure 11. Metal SVBRDF generator trained with multi-projection GAN (bottom), compared to reference training data (top).

Figure 12. Synthetic experiment on the MNIST dataset. Left: reference images. Middle: Results obtained with MP-GAN trained from
10 pre-defined projections. Right: Results obtained from the same data with VP-MP-GAN. Note due to intrinsic ambiguities between
the orientation of the content and the projection direction, VP-MP-GAN generates rotated numbers. Nevertheless, both VP-MP-GAN and
MP-GAN are able to generate high quality results from multiple 1D projections.


